高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北地区温湿指数对细菌性痢疾滞后效应及区域异质性分析

王舒姿 刘志东 高琦 张怡雯 姜宝法

王舒姿, 刘志东, 高琦, 张怡雯, 姜宝法. 华北地区温湿指数对细菌性痢疾滞后效应及区域异质性分析[J]. 中国公共卫生, 2022, 38(1): 80-84. doi: 10.11847/zgggws1131829
引用本文: 王舒姿, 刘志东, 高琦, 张怡雯, 姜宝法. 华北地区温湿指数对细菌性痢疾滞后效应及区域异质性分析[J]. 中国公共卫生, 2022, 38(1): 80-84. doi: 10.11847/zgggws1131829
WANG Shu-zi, LIU Zhi-dong, GAO Qi, . Lag effect of humidex on bacillary dysentery and its regional heterogeneity in North China[J]. Chinese Journal of Public Health, 2022, 38(1): 80-84. doi: 10.11847/zgggws1131829
Citation: WANG Shu-zi, LIU Zhi-dong, GAO Qi, . Lag effect of humidex on bacillary dysentery and its regional heterogeneity in North China[J]. Chinese Journal of Public Health, 2022, 38(1): 80-84. doi: 10.11847/zgggws1131829

华北地区温湿指数对细菌性痢疾滞后效应及区域异质性分析

doi: 10.11847/zgggws1131829
基金项目: 国家科技基础资源调查专项(2017FY101202)
详细信息
    作者简介:

    王舒姿(1995 – ),女,山东威海人,硕士在读,研究方向:流行病学

    通信作者:

    姜宝法,E-mail:bjiang@sdu.edu.cn

  • 中图分类号: R 181.3+4

Lag effect of humidex on bacillary dysentery and its regional heterogeneity in North China

  • 摘要:   目的  了解华北地区温湿指数与细菌性痢疾发病的关系,探讨区域间异质性来源。  方法  收集华北地区各地市2014年1月1日 — 2016年12月31日细菌性痢疾的发病数据和同期气象资料。应用分布滞后非线性模型评估各地市平均气温、相对湿度、温湿指数与细菌性痢疾发病之间的关系,应用meta分析合并各地市的效应值,再通过meta回归进一步探讨异质性来源。  结果  平均气温、相对湿度及温湿指数与细菌性痢疾发病数之间均呈“J”形关系。温湿指数对细菌性痢疾发病的危害效应在当天开始出现,滞后3 d时达到最大值(RR = 1.07,95 % CI = 1.05~1.09),持续至第7 d。以温湿指数的中位数为参照,温湿指数为42.4时,细菌性痢疾的累积发病风险最高(RR = 1.96,95 % CI = 1.52~2.53)。高纬度、高经度、人口自然增长率高、人均地区生产总值低的地区,温湿指数对细菌性痢疾发病的效应更强。  结论  高温湿指数会增加华北地区细菌性痢疾的发病风险,应对脆弱地区采取有效的预防措施以减少细菌性痢疾的发病。
  • 图  1  2014 — 2016年华北地区菌痢发病数、平均气温、相对湿度与温湿指数的时间序列图

    图  2  华北地区平均气温、相对湿度与菌痢发病的关系

    图  3  华北地区温湿指数与菌痢发病的关系

    图  4  纬度、经度、人口自然增长率和人均地区生产总值对温湿指数与菌痢发病关系的影响

    表  1  不同地市菌痢发病风险差异的异质性来源分析

    因素Q检验I2 值(%)信息准则Wald检验
    Q P AICBICStatP
    截距 153.4 0.000 41.3 303.9 334.7
    纬度 132.0 0.003 31.8 289.0 319.8 31.4 0.000
    经度 134.1 0.002 32.9 289.5 320.3 25.9 0.000
    人口密度 158.9 0.000 43.4 305.4 336.2 0.4 0.936
    人口自然增长率 139.5 0.001 35.5 296.0 326.7 18.1 0.000
    人均地区生产总值 138.0 0.001 34.8 296.7 327.4 22.1 0.000
      注:AIC 赤池信息准则;BIC 贝叶斯信息准则。
    下载: 导出CSV
  • [1] 曹卉. 2005 — 2016年全国细菌性痢疾的空间分布特征及发病预测[D]. 吉林: 吉林大学, 2019.
    [2] World Health Organization. Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1[EB/OL]. (2004 – 12 – 18) [2020 – 04 – 06]. https://www.who.int/maternal_child_adolescent/documents/9241592330/en/.
    [3] 李硕, 张云辉, 王永怡, 等. 2017年全球传染病热点回顾[J]. 传染病信息, 2018, 31(1): 5 – 10. doi: 10.3969/j.issn.1007-8134.2018.01.002
    [4] 国家科技基础条件平台, 国家人口健康科学数据中心. 公共卫生科学数据中心[EB/OL]. (2004 – 01 – 01) [2020 – 04 – 06]. http://www.phsciencedata.cn/Share/.
    [5] Liu ZD, Tong MX, Xiang JJ, et al. Daily temperature and bacillary dysentery: estimated effects, attributable risks, and future disease burden in 316 Chinese cities[J]. Environmental Health Perspectives, 2020, 128(5): 057008. doi: 10.1289/EHP5779
    [6] Liu ZD, Liu YY, Zhang Y, et al. Effect of ambient temperature and its effect modifiers on bacillary dysentery in Jinan, China[J]. Science of the Total Environment, 2019, 650: 2980 – 2986. doi: 10.1016/j.scitotenv.2018.10.053
    [7] Li ZJ, Wang LG, Sun WG, et al. Identifying high-risk areas of bacillary dysentery and associated meteorological factors in Wuhan, China[J]. Scientific Reports, 2013, 3(1): 3239. doi: 10.1038/srep03239
    [8] Li ZJ, Zhang XJ, Hou XX, et al. Nonlinear and threshold of the association between meteorological factors and bacillary dysentery in Beijing, China[J]. Epidemiology and Infection, 2015, 143(16): 3510 – 3519. doi: 10.1017/S0950268815001156
    [9] 张衡, 赵科伕, 何睿欣, 等. 温湿指数对合肥市细菌性痢疾影响的时间序列研究[J]. 中华流行病学杂志, 2017, 38(11): 1523 – 1527. doi: 10.3760/cma.j.issn.0254-6450.2017.11.017
    [10] 中国气象局国家气象中心, 中国气象局预测减灾司. 中国气象地理区划手册[M]. 北京: 气象出版社, 2006.
    [11] Pan RB, Gao JJ, Wang X, et al. Impacts of exposure to humidex on the risk of childhood asthma hospitalizations in Hefei, China: effect modification by gender and age[J]. Science of the Total Environment, 2019, 691: 296 – 305. doi: 10.1016/j.scitotenv.2019.07.026
    [12] Smoyer-Tomic KE, Rainham DG. Beating the heat: development and evaluation of a Canadian hot weather health-response plan[J]. Environmental Health Perspectives, 2001, 109(12): 1241 – 1248. doi: 10.1289/ehp.011091241
    [13] Conti S, Meli P, Minelli G, et al. Epidemiologic study of mortality during the summer 2003 heat wave in Italy[J]. Environmental Research, 2005, 98(3): 390 – 399. doi: 10.1016/j.envres.2004.10.009
    [14] 国家统计局城市社会经济调查司. 中国城市统计年鉴[M]. 北京: 中国统计出版社, 2016.
    [15] 王海涛, 刘志东, 劳家辉, 等. 浙江省气温对其他感染性腹泻的滞后效应及影响因素[J]. 中华流行病学杂志, 2019, 40(8): 960 – 964. doi: 10.3760/cma.j.issn.0254-6450.2019.08.016
    [16] Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associations[J]. Statistics in Medicine, 2012, 31(29): 3821 – 3839. doi: 10.1002/sim.5471
    [17] Gasparrini A, Armstrong B. Reducing and meta-analysing estimates from distributed lag non-linear models[J]. BMC Medical Research Methodology, 2013, 13(1): 1. doi: 10.1186/1471-2288-13-1
    [18] Mackey BM, Kerridge AL. The effect of incubation temperature and inoculum size on growth of Salmonellae in minced beef[J]. International Journal of Food Microbiology, 1988, 6(1): 57 – 65. doi: 10.1016/0168-1605(88)90085-2
    [19] Nygren BL, Schilling KA, Blanton EM, et al. Foodborne outbreaks of shigellosis in the USA, 1998 – 2008[J]. Epidemiology and Infection, 2013, 141(2): 233 – 241. doi: 10.1017/S0950268812000222
    [20] Kovats RS, Edwards SJ, Hajat S, et al. The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries[J]. Epidemiology and Infection, 2004, 132(3): 443 – 453. doi: 10.1017/S0950268804001992
    [21] Wu XX, Liu JN, Li CL, et al. Impact of climate change on dysentery: scientific evidences, uncertainty, modeling and projections[J]. Science of the Total Environment, 2020, 714: 136702. doi: 10.1016/j.scitotenv.2020.136702
    [22] Igo MJ, Schaffner DW. Quantifying the influence of relative humidity, temperature, and diluent on the survival and growth of Enterobacter aerogenes[J]. Journal of Food Protection, 2019, 82(12): 2135 – 2147. doi: 10.4315/0362-028X.JFP-19-261
    [23] 贾蕾, 曹卫华, 贺雄, 等. 北京市痢疾发病率影响因素分析[J]. 中国公共卫生, 2007, 23(8): 1004 – 1006. doi: 10.3321/j.issn:1001-0580.2007.08.055
    [24] Uehara S. Studies on the etiology of toxic dysentery (Ekiri) with special reference to the effects of high temperature and humidity and choline deficiency on the reticuloendothelial function[J]. Pediatrics International, 1964, 6(1): 56. doi: 10.1111/j.1442-200X.1964.tb01121.x
    [25] Fan CN, Liu FF, Zhao X, et al. An alternative comprehensive index to quantify the interactive effect of temperature and relative humidity on hand, foot and mouth disease: a two-stage time series study including 143 cities in mainland China[J]. Science of the Total Environment, 2020, 740: 140106. doi: 10.1016/j.scitotenv.2020.140106
    [26] Curriero FC, Heiner KS, Samet JM, et al. Temperature and mortality in 11 cities of the eastern United States[J]. American Journal of Epidemiology, 2002, 155(1): 80 – 87. doi: 10.1093/aje/155.1.80
    [27] Xu ZW, Hu WB, Zhang YW, et al. Spatiotemporal pattern of bacillary dysentery in China from 1990 to 2009: what is the driver behind?[J]. PLoS One, 2014, 9(8): e104329. doi: 10.1371/journal.pone.0104329
    [28] Zhang H, Si YL, Wang XF, et al. Patterns of bacillary dysentery in China, 2005 – 2010[J]. International Journal of Environmental Research and Public Health, 2016, 13(2): 164. doi: 10.3390/ijerph13020164
    [29] Bo ZY, Ma Y, Chang ZR, et al. The spatial heterogeneity of the associations between relative humidity and pediatric hand, foot and mouth disease: evidence from a nation-wide multicity study from mainland China[J]. Science of the Total Environment, 2020, 707: 136103. doi: 10.1016/j.scitotenv.2019.136103
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  637
  • HTML全文浏览量:  305
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 接收日期:  2020-07-29
  • 网络出版日期:  2021-08-12
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回