高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于适配体的杂交链式反应在检测中应用

苏柳 邓省亮 贺伟华 章钢刚

苏柳, 邓省亮, 贺伟华, 章钢刚. 基于适配体的杂交链式反应在检测中应用[J]. 中国公共卫生, 2022, 38(10): 1364-1368. doi: 10.11847/zgggws1134506
引用本文: 苏柳, 邓省亮, 贺伟华, 章钢刚. 基于适配体的杂交链式反应在检测中应用[J]. 中国公共卫生, 2022, 38(10): 1364-1368. doi: 10.11847/zgggws1134506
SU Liu, DENG Sheng-liang, HE Wei-hua, . Application of aptamer-based hybridization chain reaction in detections[J]. Chinese Journal of Public Health, 2022, 38(10): 1364-1368. doi: 10.11847/zgggws1134506
Citation: SU Liu, DENG Sheng-liang, HE Wei-hua, . Application of aptamer-based hybridization chain reaction in detections[J]. Chinese Journal of Public Health, 2022, 38(10): 1364-1368. doi: 10.11847/zgggws1134506

基于适配体的杂交链式反应在检测中应用

doi: 10.11847/zgggws1134506
基金项目: 国家自然科学基金(31960502);江西省重点研发计划项目(20202BBGL73119;20202BBFL63039);江西省科学院科技计划项目(2020 – YZD – 03)
详细信息
    作者简介:

    苏柳(1990 – ),女,江西萍乡人,助理研究员,硕士,研究方向:食品安全快速检测

    通信作者:

    邓省亮,E-mail:dslzdy@163.com

  • 中图分类号: R 115

Application of aptamer-based hybridization chain reaction in detections

  • 摘要: 开发简单、灵敏的检测方法对医学诊断、环境监测、食品安全等领域的研究具有重要意义。适配体作为新型生物识别分子,与杂交链式反应(HCR)结合能实现高灵敏检测靶标物,形成一种新型检测模式。HCR是一种无需酶参与,常温下可自组装的扩增技术。基于适配体的HCR技术因具有高特异性、高灵敏性、操作简单、成本低廉等优点受到研究者们的广泛关注。本文主要介绍了HCR反应的基本原理及特征,重点综述了近年来基于适配体的HCR技术在蛋白质、酶活性、小分子及肿瘤细胞检测中的应用,探讨了该技术目前存在的主要问题,以期为建立高效率、高灵敏的适配体HCR检测系统提供理论参考。
  • 图  1  杂交链式反应的原理[7]

    图  2  基于适配体HCR系统检测PDGF-BB的原理图[9]

    图  3  扫描电化学显微镜检测示意图[17]

    图  4  多分支HCR合成具有多个生物素标记和多个分支臂的长产物[34]

    表  1  基于适配体的杂交链式反应用于检测蛋白质

    检测物信号单元线性范围检测限参考文献
    PDGF-BB SYBR Green I 5~5 000 pmol/L 1.25 pmol/L [10]
    AGR2 AuNPs 5~1 000 nmol/L 2.65 pmol/L [11]
    糖类抗原CA125 AuNPs 0.10~10 U/mL 50 μU/mL [12]
    外泌体 FAM 103~107 颗粒/mL 100颗粒/mL [13]
    黏蛋白1 FAM 0.01~5 nmol/L 3.33 pmol/L [14]
    黏蛋白16 MB 0.39~200 unit/ml 0.02 unit/ml [15]
    血管内皮生长因子 H+ 0.80~480 pg/mL 0.50 pg/mL [16]
    下载: 导出CSV

    表  2  基于适配体的杂交链式反应用于检测酶活性

    检测物信号单元线性范围检测限参考文献
    凝血酶 HRP/H2O2/Fe2 + /Fe3 + 1~100 fmol/L 0.04 fmol/L [17]
    蛋白激酶A MB 4~4 × 105 U/L 1.50 U/L [18]
    凝血酶 HRP/H2O2 + HQ 0.10~10 nmol/L 11.60 fmol/L [19]
    凝血酶 [Ru(NH3)6]3 + 0.10~50 nmol/L 0.05 pmol/L [20]
    端粒酶 HRP/H2O2/邻苯二胺/2,3 – 二氨基吩嗪 50~10000 cell/mL 10 cell/mL [21]
    下载: 导出CSV

    表  3  基于适配体的杂交链式反应用于检测小分子

    检测物信号单元线性范围检测限参考文献
    AFB1 鲁米诺/H2O2/HRP 0.50~40 ng/mL 0.20 ng/mL [22]
    AFB1 FAM 2~60 ng/mL 1.84 ng/mL [25]
    赭曲霉毒素A TMB 0.01~0.32 nmol/L 0.01 nmol/L [26]
    卡那霉素 MB 0.05~200 pmol/L 36 fmol/L [27]
    卡那霉素 AuNPs 1.6~32 nmol/L 0.9 nmol/L [28]
    多氯联苯 MB 1 × 10 – 5 ~10 ng/L 0.001ng/ml [29]
    ATP NMM 30~800 μmol/L 15 μmol/L [23]
    ATP GNP 10~500 nmol/L 10 nmol/L [30]
    Hg2 + [Ru(NH3)6]3 + 0.20~35 000 pmol/L 0.12 pmol/L [24]
    腺苷 SYBR Green I 1~120 μmol/L 0.20 μmol/L [31]
    8-羟基-2'-脱氧鸟苷 [Ru(NH3)6]3 + 100~10 000 fmol/L 24.34 fmol/L [32]
    下载: 导出CSV

    表  4  基于适配体的杂交链式反应用于检测肿瘤细胞

    检测物信号单元检测限(细胞,个)参考文献
    肿瘤细胞 CuNPs 50 [33]
    乳腺癌肿瘤细胞 TMB 4 [34]
    肿瘤细胞 FAM 20 [35]
    肿瘤细胞 FAM 18 [36]
    肿瘤细胞 Cy5 20 [37]
    下载: 导出CSV
  • [1] Gopinath SCB. Methods developed for SELEX[J]. Analytical and Bioanalytical Chemistry, 2007, 387(1): 171 – 182.
    [2] 李晓佩, 杨良嵘, 黄昆, 等. 核酸适配体在生化分离及检测领域中的研究进展[J]. 化工学报, 2013, 64(1): 233 – 242. doi: 10.3969/j.issn.0438-1157.2013.01.025
    [3] Lorenz TC. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies[J]. Journal of Visualized Experiments, 2012(63): 3998.
    [4] Zhu X, Xu HF, Zheng HY, et al. An ultrasensitive aptameric sensor for proteins based on hyperbranched rolling circle amplification[J]. Chemical Communications, 2013, 49(86): 10115 – 10117. doi: 10.1039/c3cc45521a
    [5] Li YB, Liu S, Zhao ZK, et al. Binding induced strand displacement amplification for homogeneous protein assay[J]. Talanta, 2017, 164: 196 – 200. doi: 10.1016/j.talanta.2016.11.047
    [6] Bi S, Yue SZ, Zhang SS. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine[J]. Chemical Society Reviews, 2017, 46(14): 4281 – 4298. doi: 10.1039/C7CS00055C
    [7] Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(43): 15275 – 15278. doi: 10.1073/pnas.0407024101
    [8] Venkataraman S, Dirks RM, Rothemund PWK, et al. An autonomous polymerization motor powered by DNA hybridiza-tion[J]. Nature Nanotechnology, 2007, 2(8): 490 – 494. doi: 10.1038/nnano.2007.225
    [9] Song WQ, Zhu KL, Cao ZJ, et al. Hybridization chain reaction - based aptameric system for the highly selective and sensitive detection of protein[J]. Analyst, 2012, 137(6): 1396 – 1401. doi: 10.1039/c2an16232f
    [10] Wang XZ, Jiang AW, Hou T, et al. Enzyme - free and label - free fluorescence aptasensing strategy for highly sensitive detection of protein based on target - triggered hybridization chain reaction ampli-fication[J]. Biosensors and Bioelectronics, 2015, 70: 324 – 329. doi: 10.1016/j.bios.2015.03.053
    [11] Li ZB, Miao XM, Cheng ZY, et al. Hybridization chain reaction coupled with the fluorescence quenching of gold nanoparticles for sensitive cancer protein detection[J]. Sensors and Actuators B:Chemical, 2017, 243: 731 – 737. doi: 10.1016/j.snb.2016.12.047
    [12] Nie YT, Yang MY, Ding YL. Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125[J]. Microchimica Acta, 2018, 185(7): 331. doi: 10.1007/s00604-018-2869-4
    [13] Shi LL, Ba L, Xiong Y, et al. A hybridization chain reaction based assay for fluorometric determination of exosomes using magnetic nanoparticles and both aptamers and antibody as recognition elements[J]. Microchimica Acta, 2019, 186(12): 796. doi: 10.1007/s00604-019-3823-9
    [14] Ma C, Liu HY, Tian T, et al. A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction[J]. Biosensors and Bioelectronics, 2016, 83: 15 – 18. doi: 10.1016/j.bios.2016.04.030
    [15] Lu LS, Liu B, Leng JH, et al. Electrochemical mixed aptamer - antibody sandwich assay for mucin protein 16 detection through hybridization chain reaction amplification[J]. Analytical and Bioanalytical Chemistry, 2020, 412(26): 7169 – 7178. doi: 10.1007/s00216-020-02849-5
    [16] Xu HF, Kou FX, Ye HZ, et al. Highly sensitive antibody - aptamer sensor for vascular endothelial growth factor based on hybridiza-tion chain reaction and pH meter/indicator[J]. Talanta, 2017, 175: 177 – 182. doi: 10.1016/j.talanta.2017.04.073
    [17] Song WL, Xie XX, Sun WB, et al. Ultrasensitive electrochemical detection for thrombin using hybridization chain reaction with enzyme - amplification[J]. Analytica Chimica Acta, 2015, 860: 77 – 82. doi: 10.1016/j.aca.2014.12.029
    [18] Jia LP, Zhao RN, Wang LJ, et al. Aptamer based electrochemical assay for protein kinase activity by coupling hybridization chain reaction[J]. Biosensors and Bioelectronics, 2018, 117: 690 – 695. doi: 10.1016/j.bios.2018.06.067
    [19] Chen YX, Huang KJ, He LL, et al. Tetrahedral DNA probe coupling with hybridization chain reaction for competitive thrombin aptasensor[J]. Biosensors and Bioelectronics, 2018, 100: 274 – 281. doi: 10.1016/j.bios.2017.09.022
    [20] Chang YY, Chai YQ, Xie SB, et al. Cleavage - based hybridization chain reaction for electrochemical detection of thrombin[J]. Analyst, 2014, 139(17): 4264 – 4269. doi: 10.1039/C4AN00712C
    [21] 曹亚, 康明扬, 陈红, 等. 基于杂交链式反应辅助多重信号放大的端粒酶灵敏检测[J]. 分析化学, 2017, 45(12): 1903 – 1908. doi: 10.11895/j.issn.0253-3820.171340
    [22] Yao YY, Wang HX, Wang XZ, et al. Development of a chemiluminescent aptasensor for ultrasensitive and selective detection of aflatoxin B1 in peanut and milk[J]. Talanta, 2019, 201: 52 – 57. doi: 10.1016/j.talanta.2019.03.109
    [23] Chen QG, Guo QQ, Chen Y, et al. An enzyme - free and label - free fluorescent biosensor for small molecules by G - quadruplex based hybridization chain reaction[J]. Talanta, 2015, 138: 15 – 19. doi: 10.1016/j.talanta.2015.02.002
    [24] Bao T, Wen W, Zhang XH, et al. An exonuclease-assisted amplification electrochemical aptasensor for Hg2 + detection based on hybridization chain reaction[J]. Biosensors and Bioelectronics, 2015, 70: 318 – 323. doi: 10.1016/j.bios.2015.03.065
    [25] 黄玉坤, 陶璇, 邵坤, 等. 基于适配体杂交链式反应检测郫县豆瓣中黄曲霉毒素B1[J]. 食品科学, 2020, 41(22): 301 – 307. doi: 10.7506/spkx1002-6630-20190903-037
    [26] Wang CK, Dong XY, Liu Q, et al. Label-free colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction[J]. Analytica Chimica Acta, 2015, 860: 83 – 88. doi: 10.1016/j.aca.2014.12.031
    [27] Zeng RJ, Su LS, Luo ZB, et al. Ultrasensitive and label-free electrochemical aptasensor of kanamycin coupling with hybridi-zation chain reaction and strand-displacement amplification[J]. Analytica Chimica Acta, 2018, 1038: 21 – 28. doi: 10.1016/j.aca.2018.07.010
    [28] 田润, 陶晴, 卞晓军, 等. 基于杂交链式反应的适配体传感器用于卡那霉素的比色检测[J]. 分析化学, 2020, 48(5): 608 – 614.
    [29] Han T, Wang SZ, Sheng FF, et al. Target triggered ultrasensitive electrochemical polychlorinated biphenyl aptasensor based on DNA microcapsules and nonlinear hybridization chain reaction[J]. Analyst, 2020, 145(10): 3598 – 3604. doi: 10.1039/D0AN00065E
    [30] Li S, Shang XX, Liu J, et al. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification[J]. Analytical Biochemistry, 2017, 528: 47 – 52. doi: 10.1016/j.ab.2017.04.013
    [31] Feng CJ, Hou Z, Jiang W, et al. Binding induced colocalization activated hybridization chain reaction on the surface of magnetic nanobead for sensitive detection of adenosine[J]. Biosensors and Bioelectronics, 2016, 86: 966 – 970. doi: 10.1016/j.bios.2016.07.108
    [32] Jia LP, Feng Z, Zhao RN, et al. Enzyme-free and triple-amplified electrochemical sensing of 8-hydroxy-2'-deoxyguanosine by three kinds of short pDNA-driven catalyzed hairpin assemblies followed by a hybridization chain reaction[J]. Analyst, 2020, 145(10): 3605 – 3611. doi: 10.1039/D0AN00233J
    [33] Zhang Y, Chen ZW, Tao Y, et al. Hybridization chain reaction engineered dsDNA for Cu metallization: an enzyme-free platform for amplified detection of cancer cells and microRNAs[J]. Chemical Communications, 2015, 51(57): 11496 – 11499. doi: 10.1039/C5CC03144C
    [34] Zhou GB, Lin MH, Song P, et al. Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification[J]. Analytical Chemistry, 2014, 86(15): 7843 – 7848. doi: 10.1021/ac502276w
    [35] Yuan BY, Guo LY, Yin K, et al. Highly sensitive and specific detection of tumor cells based on a split aptamer-triggered dual hybridization chain reaction[J]. Analyst, 2020, 145(7): 2676 – 2681. doi: 10.1039/C9AN02476J
    [36] Li L, Jiang HS, Meng XX, et al. Highly sensitive detection of cancer cells via split aptamer mediated proximity-induced hybridization chain reaction[J]. Talanta, 2021, 223: 121724. doi: 10.1016/j.talanta.2020.121724
    [37] Tang JL, Lei YL, He XX, et al. Recognition-driven remodeling of dual-split aptamer triggering in situ hybridization chain reaction for activatable and autonomous identification of cancer cells[J]. Analytical Chemistry, 2020, 92(15): 10839 – 10846. doi: 10.1021/acs.analchem.0c02524
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  935
  • HTML全文浏览量:  643
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 接收日期:  2021-03-02
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回