高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气污染物与温度对天津市河西区人群肺癌早死寿命损失年交互作用

张经纬 冯利红 王淼 侯常春

张经纬, 冯利红, 王淼, 侯常春. 大气污染物与温度对天津市河西区人群肺癌早死寿命损失年交互作用[J]. 中国公共卫生, 2021, 37(8): 1282-1289. doi: 10.11847/zgggws1125192
引用本文: 张经纬, 冯利红, 王淼, 侯常春. 大气污染物与温度对天津市河西区人群肺癌早死寿命损失年交互作用[J]. 中国公共卫生, 2021, 37(8): 1282-1289. doi: 10.11847/zgggws1125192
ZHANG Jing-wei, FENG Li-hong, WANG Miao, . Interactive effect of temperature and air pollutants on years of life lost due to lung cancer among residents in Hexi district of Tianjin city[J]. Chinese Journal of Public Health, 2021, 37(8): 1282-1289. doi: 10.11847/zgggws1125192
Citation: ZHANG Jing-wei, FENG Li-hong, WANG Miao, . Interactive effect of temperature and air pollutants on years of life lost due to lung cancer among residents in Hexi district of Tianjin city[J]. Chinese Journal of Public Health, 2021, 37(8): 1282-1289. doi: 10.11847/zgggws1125192

大气污染物与温度对天津市河西区人群肺癌早死寿命损失年交互作用

doi: 10.11847/zgggws1125192
基金项目: 国家自然科学基金面上项目(81573123)
详细信息
    作者简介:

    张经纬(1990 – ),男,天津市人,医师,硕士,研究方向:环境流行病学

    通信作者:

    侯常春,E-mail:13323361505@163.com

  • 中图分类号: R 181.3+4

Interactive effect of temperature and air pollutants on years of life lost due to lung cancer among residents in Hexi district of Tianjin city

  • 摘要:   目的  探讨大气污染物与温度对天津市河西区人群肺癌早死寿命损失年(YLL)的交互作用,为肺癌死亡影响因素研究提供参考依据。  方法  收集天津市河西区人群2015年1月1日 — 2017年12月31日的肺癌死亡相关数据及2015 — 2017年天津市河西区空气质量监测点环保监测数据和天津市气象数据,应用分布滞后非线性模型建立双变量响应面模型及单污染物和多污染物温度交互模型,分析大气污染物与温度对天津市河西区人群肺癌YLL的交互作用。  结果  相对于参考温度16.3 ℃,高温(34 ℃)和低温(– 13 ℃)分别使天津市河西区人群每日肺癌YLL上升1.12 %(95 % CI = 0.58 %~2.16 %)和1.49 %(95 % CI = 0.16 %~14.25 %);细颗粒物(PM2.5)、二氧化氮(NO2)、一氧化碳(CO)、臭氧(O3)-1 h和O3-8 h可分别导致天津市河西区人群肺癌YLL上升1.00 %(95 % CI = 0.98 %~1.03 %)、1.01 %(95 % CI = 0.95 %~1.08 %)、1.01 %(95 % CI = 0.99 %~1.03 %)、1.03 %(95 % CI = 0.98 %~1.09 %)和1.03 %(95 % CI = 0.98 %~1.09 %);且在低温时,每升高10 μg/m3的PM2.5和NO2可分别导致天津市河西区人群肺癌YLL上升4.14 %(95 % CI = 0.55 %~7.85 %和5.44 %(95 % CI = – 4.80 %~16.78 %)。  结论  高温和低温以及PM2.5、NO2、CO、O3-1h和O3-8 h均能增加每日肺癌YLL,且低温时PM2.5和NO2对每日肺癌YLL影响的效应较强。
  • 图  1  天津市河西区2015 — 2017年气温对肺癌死亡YLL影响

    图  2  天津市河西区2015 — 2017年各污染物在不同滞后日时对每日肺癌YLL影响

    图  3  各污染物浓度与气温的双变量响应面模型

    图  4  各污染物在不同温度层对每日肺癌YLL的影响

    表  1  天津市河西区2015 — 2017年因肺癌每日死亡数、YLL、大气污染物浓度和气象数据

    项目  $\bar x \pm s$  最小值  P25  M  P75  最大值
    死亡数(人/天) 1.6 ± 1.2 0.0 1.0 1.0 2.0 6.0
    YLL(人年/天) 16.7 ± 14.2 0.0 5.8 14.6 25.2 80.6
    SO2(μg/m3 22.4 ± 24.8 0.5 9.0 15.0 27.0 230.6
    NO2(μg/m3 49.8 ± 25.6 3.9 29.9 46.0 65.0 177.0
    PM2.5(μg/m3 67.6 ± 51.3 6.3 33.0 52.0 86.0 345.5
    PM10(μg/m3 104.2 ± 72.1 6.0 57.0 86.6 130.9 695.0
    CO(mg/m3 1.3 ± 0.8 0.1 0.8 1.1 1.7 7.9
    O3-1 h(μg/m3 51.6 ± 34.6 0.7 24.8 44.0 72.0 187.0
    O3-8 h(μg/m3 52.0 ± 34.3 0.8 25.0 51.9 74.0 177.0
    平均温度(℃) 14.8 ± 10.9 – 13.0 3.9 16.3 25.0 34.0
    相对湿度(%) 51.7 ± 19.7 7.6 35.8 52.0 67.4 94.5
    平均气压(hPa) 1 017.0 ± 10.2 994.0 1 008.0 1 017.0 1 025.0 1 043.0
    下载: 导出CSV

    表  2  天津市河西区大气污染物浓度与气象因素相关性(r

    项目 SO2 NO2 PM2.5 PM10 CO O3-1 h O3-8 h 平均气压 平均温度 平均湿度
    SO2 1.000
    NO2 0.722 b 1.000
    PM2.5 0.562 a 0.615 a 1.000
    PM10 0.545 a 0.565 a 0.845 b 1.000
    CO 0.658 a 0.746 b 0.675 a 0.545 a 1.000
    O3-1 h – 0.370 a – 0.476 a – 0.225 a – 0.140 a – 0.390 a 1.000
    O3-8 h – 0.387 a – 0.474 a – 0.235 a – 0.159 a – 0.397 a 0.977 b 1.000
    平均气压 0.446 a 0.446 a 0.057 0.019 0.286 a – 0.661 a – 0.665 a 1.000
    平均温度 – 0.522 a – 0.490 a – 0.166 a – 0.129 a – 0.356 a 0.708 b 0.713 b – 0.637 a 1.000
    相对湿度 – 0.125 a – 0.040 0.251 a 0.085 a 0.222 a – 0.121 a – 0.117 a – 0.191 0.251 1.000
      注:a P < 0.05,b P < 0.01。
    下载: 导出CSV

    表  3  5种分割方法的GCV法验证结果

    模型 GCV
    P5P95 P10P90 P15P85 P20P80 P25P75
    PM2.5(lag 03) 13.748 13.765 13.710 13.686 13.668
    CO(lag 07) 13.697 13.716 13.710 13.697 13.691
    NO2(lag 05) 13.734 13.743 13.669 13.664 13.633
    O3-1 h(lag 05) 13.722 13.736 13.714 13.686 13.649
    O3-8 h(lag 05) 13.723 13.736 13.705 13.680 13.643
    下载: 导出CSV

    表  4  多污染物模型中各污染物对每日肺癌YLL的影响

    污染物 温度层
     ER% 95 % CI  ER% 95 % CI  ER% 95 % CI
    PM2.5 4.14 0.55~7.85 a – 0.90 – 3.58~1.85 1.43 – 4.93~8.22
     + SO2 3.68 0.02~7.49 a – 0.84 – 3.71~2.11 1.24 – 5.14~8.06
     + NO2 3.64 0.01~7.42 a – 0.43 – 3.47~2.71 1.14 – 5.23~7.95
     + CO 3.40 – 0.39~7.33 a – 0.93 – 3.83~2.06 0.94 – 5.42~7.72
     + PM10 3.45 – 0.17~7.21 a – 0.07 – 5.18~5.32 1.25 – 5.11~8.05
     + O3-1 h 3.95 0.27~7.76 a – 0.77 – 3.49~2.02 0.59 – 5.93~7.57
     + O3-8 h 3.96 0.28~7.77 a – 0.77 – 3.49~2.02 0.57 – 5.96~7.55
    CO 0.69 – 2.14~3.61 0.75 – 1.68~3.23 0.07 – 4.30~4.63
     + PM2.5 0.86 – 1.99~3.80 – 0.15 – 0.49~0.19 – 0.30 – 4.67~4.27
     + PM10 0.79 – 2.06~3.73 1.53 – 1.09~4.23 – 0.43 – 4.82~4.16
     + O3-1 h 0.65 – 2.21~3.59 0.80 – 1.63~3.29 0.06 – 4.41~4.37
     + O3-8 h 0.64 – 2.22~3.58 0.82 – 1.62~3.32 0.03 – 4.43~4.70
     + NO2 0.57 – 2.29~3.52 1.38 – 1.44~4.28 – 0.14 – 4.53~4.44
     + SO2 0.52 – 2.39~3.51 0.99 – 1.67~3.73 – 0.06 – 4.45~4.53
    O3-1 h – 5.28 – 18.06~9.50 5.11 – 0.53~11.07 – 6.79 – 12.76~– 0.42 a
     + SO2 – 5.33 – 18.51~9.96 4.99 – 0.71~11.03 – 6.78 – 12.78~– 0.37 a
     + NO2 – 4.30 – 18.39~12.23 4.99 – 0.66~10.97 – 6.98 – 12.98~– 0.58 a
     + CO – 1.36 – 15.61~15.29 4.64 – 1.01~10.60 – 6.79 – 12.77~– 0.41 a
     + O3-8 h – 6.11 – 18.95~8.76 3.47 – 15.44~26.61 – 6.76 – 12.79~– 0.32 a
     + PM2.5 – 4.19 – 17.68~11.50 4.73 – 0.94~10.73 – 6.88 – 12.89~– 0.46 a
     + PM10 – 5.92 – 18.99~9.25 5.02 – 0.67~11.03 – 6.65 – 12.65~– 0.24 a
    O3-8 h – 5.59 – 18.39~9.21 5.31 – 0.25~11.17 – 7.03 – 12.94~– 0.72 a
     + SO2 – 5.71 – 18.85~9.57 5.20 – 0.43~11.14 – 7.02 – 12.96~– 0.67 a
     + NO2 – 4.67 – 18.78~11.88 5.16 – 0.40~11.04 – 7.19 – 13.12~– 0.85 a
     + CO – 1.78 – 15.97~14.81 4.87 – 0.68~10.73 – 7.08 – 12.99~– 0.77 a
     + O3-1 h – 6.38 – 19.22~8.51 7.25 – 12.40~31.32 – 6.95 – 12.94~– 0.54 a
     + PM2.5 – 4.58 – 18.05~11.10 4.96 – 0.62~10.85 – 7.14 – 13.09~– 0.78 a
     + PM10 – 6.30 – 19.36~8.88 5.26 – 0.34~11.18 – 6.89 – 12.83~– 0.55 a
    NO2 5.44 – 4.80~16.78 a 0.56 – 11.49~14.27 – 11.83 – 22.77~0.67
     + SO2 6.23 – 4.43~18.09 a – 0.60 – 8.01~7.40 – 11.55 – 22.60~1.06
     + CO 4.62 – 5.70~16.08 a – 2.43 – 9.49~2.02 – 11.90 – 22.84~0.60
     + O3-1 h 6.69 – 3.82~18.33 a 0.24 – 6.32~7.25 – 12.99 – 24.05~– 0.32
     + O3-8 h 6.77 – 3.75~18.44 a 0.18 – 6.38~7.20 – 12.94 – 23.99~– 0.27
     + PM2.5 5.93 – 4.55~17.56 a – 0.32 – 7.65~7.60 – 11.55 – 22.57~1.04
     + PM10 6.25 – 4.25~17.90 a 1.21 – 5.94~8.90 – 11.78 – 22.76~0.76
      注:a与中温度层污染物效应比较,P < 0.05。
    下载: 导出CSV
  • [1] Carter-Harris L, Slaven JE Jr, Monahan PO, et al. Understanding lung cancer screening behavior: racial, gender, and geographic differences among Indiana long-term smokers[J]. Preventive Medi-cine Reports, 2018, 10(49): 49 – 54.
    [2] 邢京京. 大气污染物对肺癌和COPD死亡率影响的回顾性队列研究[D].天津: 天津医科大学, 2017.
    [3] 刘志强, 何斐, 林勇, 等. 居住环境及室内空气污染与肺癌发病关系病例对照研究[J]. 中国公共卫生, 2017, 33(9): 1340 – 1344. doi: 10.11847/zgggws2017-33-09-12
    [4] Hamra GB, Guha N, Cohen A, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis[J]. Environ Health Perspect, 2014, 122(9): 906 – 911. doi: 10.1289/ehp/1408092
    [5] Demetriou CA, Raaschou-Nielsen O, Loft S, et al. Biomarkers of ambient air pollution and lung cancer: a systematic review[J]. Occu-pational and Environmental Medicine, 2012, 69(9): 619 – 627. doi: 10.1136/oemed-2011-100566
    [6] 徐佳, 陈魁敏, 杨彪, 等. PM2.5空气污染物对大鼠肺部炎症细胞因子表达影响[J]. 中国公共卫生, 2017, 33(6): 919 – 922. doi: 10.11847/zgggws2017-33-06-13
    [7] Jie B, Xu D, He MZ, et al. The effect of high temperature on cause-specific mortality: a multi-county analysis in China[J]. Environment International, 2017, 106: 19 – 26. doi: 10.1016/j.envint.2017.05.019
    [8] Li B, Burnett RT, Kwong JC, et al. Long-term exposure to air pollution and the incidence of multiple sclerosis: a population-based cohort study[J]. Environmental Research, 2018, 166: 437 – 443. doi: 10.1016/j.envres.2018.06.003
    [9] Zeng Q, Ni Y, Li G, et al. The quantitative assessment of the public excess disease burden advanced by inhalable particulate matter under different air quality standard targets in Tianjin, China[J]. Environmental Science and Pollution Research International, 2019, 26(7): 6931 – 6938. doi: 10.1007/s11356-019-04123-3
    [10] Zhang J, Feng L, Hou C, et al. Interactive effect between tempera-ture and fine particulate matter on chronic disease hospital admissions in the urban area of Tianjin, China[J]. International Journal of Environmental Health Research, 2019, 29(4): 1 – 10.
    [11] Wang C, Chen R, Kuang X, et al. Temperature and daily mortality in Suzhou, China: a time series analysis[J]. The Science of the Total Environment, 2014, 466 – 467: 985 – 990. doi: 10.1016/j.scitotenv.2013.08.011
    [12] Trinh TT, Trinh TT, Le TT, et al. Temperature inversion and air pollution relationship, and its effects on human health in Hanoi City, Vietnam[J]. Environmental Geochemistry and Health, 2019, 41(2): 929 – 937. doi: 10.1007/s10653-018-0190-0
    [13] Cheng Z, Wang S, Jiang J, et al. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China[J]. Environmental Pollution (Barking, Essex : 1987), 2013, 182: 101 – 110. doi: 10.1016/j.envpol.2013.06.043
    [14] Breitner S, Wolf K, Devlin RB, et al. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: a time-series analysis[J]. Science of the Total Environment, 2014, 485 – 486: 49 – 61. doi: 10.1016/j.scitotenv.2014.03.048
    [15] Zhao Q, Zhao Y, Li S, et al. Impact of ambient temperature on clinical visits for cardio-respiratory diseases in rural villages in northwest China[J]. Science of the Total Environment, 2018, 612: 379 – 385. doi: 10.1016/j.scitotenv.2017.08.244
    [16] Eccles R. An explanation for the seasonality of acute upper respiratory tract viral infections[J]. Acta Oto-Laryngologica, 2002, 122(2): 183 – 191. doi: 10.1080/00016480252814207
    [17] Anderson GB, Dominici F, Wang Y, et al. Heat-related emergency hospitalizations for respiratory diseases in the Medicare popula-tion[J]. American Journal of Respiratory and Critical Care Medicine, 2013, 187(10): 1098 – 1103. doi: 10.1164/rccm.201211-1969OC
    [18] Modesti PA. Season, temperature and blood pressure: a complex interaction[J]. European Journal of Internal Medicine, 2013, 24(7): 604 – 607. doi: 10.1016/j.ejim.2013.08.002
    [19] Chen G, Wan X, Yang G, et al. Traffic-related air pollution and lung cancer: a meta-analysis[J]. Thoracic Cancer, 2015, 6(3): 307 – 318. doi: 10.1111/1759-7714.12185
    [20] Pope CA 3rd, Burnett RT, Thun MJ, et al. Lung cancer, cardio-pulmonary mortality, and long-term exposure to fine particulate air pollution[J]. JAMA, 2002, 287(9): 1132 – 1141. doi: 10.1001/jama.287.9.1132
    [21] Yang B, Chen D, Zhao H, et al. The effects for PM2.5 exposure on non-small-cell lung cancer induced motility and proliferation[J]. Springerplus, 2016, 5(1): 2059. doi: 10.1186/s40064-016-3734-8
    [22] Xi C, Zhang LW, Huang JJ, et al. Long-term exposure to urban air pollution and lung cancer mortality: a 12-year cohort study in Northern China[J]. Science of the Total Environment, 2016, 571: 855 – 861. doi: 10.1016/j.scitotenv.2016.07.064
    [23] Cheng Y, Kan H. Effect of the interaction between outdoor air pollution and extreme temperature on daily mortality in Shanghai, China[J]. J Epidemiol, 2012, 22(1): 28 – 36. doi: 10.2188/jea.JE20110049
    [24] Schwarts J. How sensitive is the association between ozone and daily deaths to control for temperature?[J]. American Journal of Respiratory and Critical Care Medicine, 2005, 171(6): 627 – 631. doi: 10.1164/rccm.200407-933OC
    [25] Lowe R, Ballester J, Creswick J, et al. Evaluating the performance of a climate-driven mortality model during heat waves and cold spells in Europe[J]. Int J Environ Res Public Health, 2015, 12(2): 1279 – 1294. doi: 10.3390/ijerph120201279
    [26] 何伟, 何涛. 武进区大气臭氧浓度与气象条件的关系[J]. 安徽农学通报, 2018, 24(24): 97 – 99.
    [27] Li T, Yan M, Sun Q, et al. Mortality risks from a spectrum of causes associated with wide-ranging exposure to fine particulate matter: a case-crossover study in Beijing, China[J]. Environment International, 2018, 111: 52 – 59. doi: 10.1016/j.envint.2017.10.023
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  5792
  • HTML全文浏览量:  1128
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 接收日期:  2019-07-17
  • 网络出版日期:  2019-12-02
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回