高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泰州市55~65岁汉族农村居民肠道菌群与骨密度关联性分析

杨丹桐 朱嗣博 蒋艳峰 田为中 张德坤 陈锦华 范敏 崔梅 徐珂琳 陈兴栋

杨丹桐, 朱嗣博, 蒋艳峰, 田为中, 张德坤, 陈锦华, 范敏, 崔梅, 徐珂琳, 陈兴栋. 泰州市55~65岁汉族农村居民肠道菌群与骨密度关联性分析[J]. 中国公共卫生, 2022, 38(6): 743-748. doi: 10.11847/zgggws1134910
引用本文: 杨丹桐, 朱嗣博, 蒋艳峰, 田为中, 张德坤, 陈锦华, 范敏, 崔梅, 徐珂琳, 陈兴栋. 泰州市55~65岁汉族农村居民肠道菌群与骨密度关联性分析[J]. 中国公共卫生, 2022, 38(6): 743-748. doi: 10.11847/zgggws1134910
YANG Dan-tong, ZHU Si-bo, JIANG Yan-feng, . Association of gut microbiota with bone mineral density in 55 – 65 years old rural Han residents of Taizhou city[J]. Chinese Journal of Public Health, 2022, 38(6): 743-748. doi: 10.11847/zgggws1134910
Citation: YANG Dan-tong, ZHU Si-bo, JIANG Yan-feng, . Association of gut microbiota with bone mineral density in 55 – 65 years old rural Han residents of Taizhou city[J]. Chinese Journal of Public Health, 2022, 38(6): 743-748. doi: 10.11847/zgggws1134910

泰州市55~65岁汉族农村居民肠道菌群与骨密度关联性分析

doi: 10.11847/zgggws1134910
基金项目: 国家重点研发计划项目(2017YFC0907500;2017YFC0907000);上海市扬帆计划项目(19YF1403400);上海市科技重大专项(2017SHZDZX01);中国博士后科学基金项目(2019M661376)
详细信息
    作者简介:

    杨丹桐(1995 – ),女,海南海口人,硕士在读,研究方向:分子流行病学

    通信作者:

    徐珂琳,E-mail:xukelin@fudan.edu.cn

    陈兴栋,E-mail:xingdongchen@fudan.edu.cn

  • 中图分类号: R 18

Association of gut microbiota with bone mineral density in 55 – 65 years old rural Han residents of Taizhou city

  • 摘要:   目的  了解江苏省泰州市55~65岁汉族农村居民肠道菌群与骨密度之间的关联性,为骨质疏松症的预防提供新的思路。  方法  于2013年3月 — 2018年10月采用整群随机抽样方法抽取泰州队列中依从性和应答率较高的3个自然村中537名55~65岁在泰州市居住 ≥ 20年的汉族农村居民进行问卷调查、体格检查、骨密度测量和粪便检查,并参照世界卫生组织的诊断标准将其分为正常骨密度组、低骨量组和骨质疏松组3组,分析组间菌群的差异以及肠道菌群与骨密度之间的相关性。  结果  泰州市537名55~65岁汉族农村居民中,正常骨密度组207人(38.55 %),低骨量组239人(44.51 %),骨质疏松组91例(16.94 %)。在校正了性别、年龄、体质指数、吸烟情况和饮酒情况等变量后,偏相关分析结果显示,新鲜蔬菜(β = – 0.125)、新鲜水果(β = – 0.101)、肉类(β = – 0.098)和酸奶(β = – 0.033)摄入频次均与骨密度分组呈负相关(均P < 0.05)。与正常骨密度组比较,梭形杆菌、布劳特氏菌、弯曲杆菌、大肠杆菌、链球菌、放线菌、志贺氏菌、厌氧菌、链霉菌和奇异果菌在低骨量组和骨质疏松组的丰度均有所下降,而棒状杆菌、韦洛内拉菌和短链单胞菌在低骨量组和骨质疏松组的丰度则均有所增加(均P < 0.05)。在调整了性别、年龄、体质指数、吸烟情况、饮酒情况、新鲜蔬菜摄入频次、新鲜水果摄入频次、肉类摄入频次和酸奶摄入频次等混杂因素后,多因素非条件logistic回归分析结果显示,大肠杆菌(OR = 0.992,95 % CI = 0.985~0.999)、志贺氏菌(OR = 0.984,95 % CI = 0.970~0.998)、布劳特氏菌(OR = 0.959,95 % CI = 0.924~0.996)和镰刀菌(OR = 0.980,95 % CI = 0.962~0.998)丰度的增加是泰州市55~65岁汉族农村居民低骨量发生的保护因素,粪杆菌丰度的增加(OR = 1.060,95 % CI = 1.006~1.118)是泰州市55~65岁汉族农村居民骨质疏松发生的危险因素,木杆菌丰度的增加(OR = 0.865,95 % CI = 0.763~0.981)是泰州市55~65岁汉族农村居民骨质疏松发生的保护因素。  结论  肠道菌群与骨密度具有相关性,大肠杆菌、志贺氏菌、布劳特氏菌、镰刀菌、粪杆菌和木杆菌丰度的增加均会对泰州市55~65岁汉族农村居民的骨密度造成一定影响。
  • 图  1  不同组间Alpha多样性比较

    图  2  不同性别间Alpha多样性比较

    图  3  不同组间Beta多样性比较

    图  4  不同性别间Beta多样性比较

    表  1  泰州市不同组别55~65岁汉族农村居民肠道菌群丰度比较

    肠道菌群标化丰度均值($\bar x \pm s$)
    正常骨密度组低骨量组骨质疏松组
    梭形杆菌36.26 ± 95.2815.54 ± 95.23 b25.15 ± 95.18 b
    布劳特氏菌140.69 ± 141.94104.15 ± 141.79 b123.39 ± 141.64 a
    弯曲杆菌13.30 ± 22.049.92 ± 22.01 b11.17 ± 21.99 a
    类芽孢杆菌2.00 ± 2.131.86 ± 2.121.75 ± 2.12 a
    棒状杆菌10.64 ± 66.1414.86 ± 66.08 b11.90 ± 66.30 b
    大肠杆菌1221.74 ± 1697.40857.20 ± 1695.54 b863.29 ± 1694.25 b
    链球菌304.55 ± 511.42183.00 ± 511.06 a189.47 ± 510.67 b
    放线菌22.59 ± 37.609.99 ± 37.58 b7.52 ± 37.53 b
    志贺氏菌110.76 ± 145.6578.51 ± 145.50 a89.67 ± 145.36 b
    木杆菌2.72 ± 2.992.20 ± 2.981.21 ± 2.97 b
    厌氧菌6.21 ± 9.725.31 ± 9.70 a4.61 ± 9.69 a
    链霉菌7.64 ± 10.117.35 ± 10.07 a3.23 ± 10.03 b
    莱克莱西亚菌12.67 ± 16.125.92 ± 16.0413.23 ± 15.96 b
    甲烷八叠球菌5.26 ± 8.126.01 ± 8.013.12 ± 8.08 b
    艰难梭菌110.64 ± 196.28115.06 ± 196.1289.03 ± 195.95 a
    戈多尼杆菌15.23 ± 25.6111.45 ± 25.5812.43 ± 25.54 a
    葡萄球菌3.84 ± 14.774.66 ± 14.763.13 ± 14.74 b
    克雷伯氏菌1421.87 ± 2634.721267.18 ± 1235.581471.18 ± 2630.34 a
    粪杆菌1537.13 ± 1800.921632.86 ± 1798.992128.64 ± 1797.07 a
    乳酸菌86.55 ± 324.3267.04 ± 324.14104.76 ± 323.96 a
    嗜胆菌59.45 ± 130.4957.58 ± 130.3836.35 ± 130.23 a
    大球藻菌118.95 ± 222.7971.77 ± 222.5250.23 ± 222.26 a
    单杆菌2.67 ± 3.092.04 ± 3.081.29 ± 3.08 a
    寄生虫菌45.01 ± 54.7419.16 ± 54.6414.46 ± 54.53 a
    链状杆菌6.28 ± 62.4119.48 ± 26.37 b7.31 ± 62.34
    多雷亚菌65.07 ± 68.3446.67 ± 68.26 b48.77 ± 68.19
    酪酸球菌132.25 ± 178.5594.83 ± 178.39 b91.41 ± 178.22
    毛单胞菌35.45 ± 601.51363.48 ± 599.85 b84.17 ± 598.13
    普罗维登西亚菌14.82 ± 403.32105.45 ± 402.80 b25.89 ± 402.25
    吉米格菌292.27 ± 504.78263.89 ± 504.39 b444.78 ± 506.01
    沙门氏菌14.39 ± 13.0713.40 ± 13.05 b14.69 ± 13.03
    瘤胃球菌289.96 ± 325.15275.94 ± 324.81 a324.46 ± 392.04
    科林塞拉196.12 ± 418.26127.89 ± 418.32 b183.69 ± 418.01
    明串珠菌4.97 ± 7.834.69 ± 7.79 a4.67 ± 7.75
    罗西亚菌12.36 ± 19.299.16 ± 17.27 a12.30 ± 19.25
    小颗粒菌109.90 ± 143.13109.23 ± 142.98 a108.49 ± 142.83
    梭菌70.89 ± 188.1051.91 ± 188.00 a30.86 ± 187.89
    不动杆菌30.05 ± 236.62129.72 ± 236.48 b22.85 ± 236.33
    奇异果菌8.29 ± 17.694.90 ± 17.67 a4.23 ± 17.65 a
    艾森伯格菌9.68 ± 13.728.57 ± 13.71 a12.51 ± 13.69 a
    嗜酸杆菌171.59 ± 232.52175.22 ± 232.28 a152.53 ± 232.04 a
    韦洛内拉菌98.30 ± 568.60190.09 ± 568.31 a134.88 ± 568.03 a
    短链单胞菌42.97 ± 1060.92610.91 ± 1058.20 a83.76 ± 1055.96 b
    克罗诺杆菌28.12 ± 381.3225.19 ± 381.09 b141.61 ± 380.85 b
      注:各组间比较,a P < 0.05;b P < 0.01。
    下载: 导出CSV
  • [1] Lorentzon M, Cummings SR. Osteoporosis: the evolution of a diagnosis[J]. Journal of Internal Medicine, 2015, 277(6): 650 – 661. doi: 10.1111/joim.12369
    [2] Chen P, Li ZZ, Hu YH. Prevalence of osteoporosis in China: a meta - analysis and systematic review[J]. BMC Public Health, 2016, 16(1): 1039. doi: 10.1186/s12889-016-3712-7
    [3] Hernandez CJ, Guss JD, Luna M, et al. Links between the microbiome and bone[J]. Journal of Bone and Mineral Research, 2016, 31(9): 1638 – 1646. doi: 10.1002/jbmr.2887
    [4] McCabe L, Britton RA, Parameswaran N. Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome[J]. Current Osteoporosis Reports, 2015, 13(6): 363 – 371. doi: 10.1007/s11914-015-0292-x
    [5] Kanis JA, Melton III J, Christiansen C, et al. The diagnosis of osteoporosis[J]. Journal of Bone and Mineral Research, 1994, 9(8): 1137 – 1141.
    [6] Lv J, Chen W, Sun DJY, et al. Gender - specific association between tobacco smoking and central obesity among 0.5 million Chinese people: the China Kadoorie biobank study[J]. PLoS One, 2015, 10(4): e0124586. doi: 10.1371/journal.pone.0124586
    [7] Lu JP, Lu Y, Wang XC, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1 – 7 million adults in a population - based screening study (China PEACE Million Persons Project)[J]. The Lancet, 2017, 390(10112): 2549 – 2558. doi: 10.1016/S0140-6736(17)32478-9
    [8] Sjögren K, Engdahl C, Henning P, et al. The gut microbiota regulates bone mass in mice[J]. Journal of Bone and Mineral Research, 2012, 27(6): 1357 – 1367. doi: 10.1002/jbmr.1588
    [9] Li LS, Rao ST, Cheng YZ, et al. Microbial osteoporosis: the interplay between the gut microbiota and bones via host metabolism and immunity[J]. Microbiology Open, 2019, 8(8): e00810.
    [10] Tyagi AM, Yu MC, Darby TM, et al. The microbial metabolite butyrate stimulates bone formation via T regulatory cell - mediated regulation of WNT10B expression[J]. Immunity, 2018, 49(6): 1116 – 1131.e7. doi: 10.1016/j.immuni.2018.10.013
    [11] Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota[J]. World Journal of Gastroenterology, 2015, 21(29): 8787 – 8803. doi: 10.3748/wjg.v21.i29.8787
    [12] Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppre-sses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1): 128 – 139. doi: 10.1016/j.immuni.2013.12.007
    [13] Yan J, Herzog JW, Tsang K, et al. Gut microbiota induce IGF - 1 and promote bone formation and growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47): E7554 – E7563. doi: 10.1073/pnas.1607235113
    [14] Benítez-Páez A, Del Pugar EMG, López-Almela I, et al. Depletion of Blautia species in the microbiota of obese children relates to intestinal inflammation and metabolic phenotype worsening[J]. mSystems, 2020, 5(2): e00857.
    [15] Kanda J, Izumo N, Kobayashi Y, et al. Effects of the antiepileptic drugs phenytoin, gabapentin, and levetiracetam on bone strength, bone mass, and bone turnover in rats[J]. Biological and Pharmaceut-ical Bulletin, 2017, 40(11): 1934 – 1940. doi: 10.1248/bpb.b17-00482
    [16] Miquel S, Martín R, Rossi O, et al. Faecalibacterium prausnitzii and human intestinal health[J]. Current Opinion in Microbiology, 2013, 16(3): 255 – 261. doi: 10.1016/j.mib.2013.06.003
    [17] Xu ZM, Xie Z, Sun JG, et al. Gut microbiome reveals specific dysbiosis in primary osteoporosis[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 160. doi: 10.3389/fcimb.2020.00160
    [18] Bashir M, Prietl B, Tauschmann M, et al. Effects of high doses of vitamin D3 on mucosa - associated gut microbiome vary between regions of the human gastrointestinal tract[J]. European Journal of Nutrition, 2016, 55(4): 1479 – 1489. doi: 10.1007/s00394-015-0966-2
    [19] Das M, Cronin O, Keohane DM, et al. Gut microbiota alterations associated with reduced bone mineral density in older adults[J]. Rheumatology, 2019, 58(12): 2295 – 2304. doi: 10.1093/rheumatology/kez302
    [20] Schipmann S, Metzler P, Rössle M, et al. Osteopathology associated with bone resorption inhibitors – which role does Actinomyces play? A presentation of 51 cases with systematic review of the literature[J]. Journal of Oral Pathology and Medicine, 2013, 42(8): 587 – 593. doi: 10.1111/jop.12038
    [21] Li J, Li Y, Zhou Y, et al. Actinomyces and alimentary tract diseases: a review of its biological functions and pathology[J]. BioMed Research International, 2018, 2018: 3820215.
    [22] 中华医学会放射学分会骨关节学组, 中国医师协会放射医师分会肌骨学组, 中华医学会骨科学分会骨质疏松学组, 等. 骨质疏松的影像学与骨密度诊断专家共识[J]. 中华骨科杂志, 2020, 40(16): 1039 – 1046. doi: 10.3760/cma.j.cn121113-20200729-00477
    [23] 刘嘉鑫, 王薇, 韩剑锋, 等. 甲状腺疾病、糖尿病相关骨质疏松的病因研究进展[J]. 中国骨质疏松杂志, 2014, 20(2): 210 – 213.
    [24] Von Martels JZH, Sadabad MS, Bourgonje AR, et al. The role of gut microbiota in health and disease: in vitro modeling of host - microbe interactions at the aerobe - anaerobe interphase of the human gut[J]. Anaerobe, 2017, 44: 3 – 12. doi: 10.1016/j.anaerobe.2017.01.001
    [25] 朱真, 朱嗣博, 张铁军, 等. 宏基因组学与人类健康关系研究进展[J]. 中国公共卫生, 2019, 35(1): 122 – 124. doi: 10.11847/zgggws1118997
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  172
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 接收日期:  2021-04-02
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回