高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大麻二酚对小鼠肝纤维化抗氧化作用

马润 舒远辉 谢娜 周艳 项一宁 王豫萍

马润, 舒远辉, 谢娜, 周艳, 项一宁, 王豫萍. 大麻二酚对小鼠肝纤维化抗氧化作用[J]. 中国公共卫生, 2022, 38(2): 181-185. doi: 10.11847/zgggws1135692
引用本文: 马润, 舒远辉, 谢娜, 周艳, 项一宁, 王豫萍. 大麻二酚对小鼠肝纤维化抗氧化作用[J]. 中国公共卫生, 2022, 38(2): 181-185. doi: 10.11847/zgggws1135692
MA Run, SHU Yuan-hui, XIE Na, . Antioxidant effect of cannabidiol in mice with liver fibrosis[J]. Chinese Journal of Public Health, 2022, 38(2): 181-185. doi: 10.11847/zgggws1135692
Citation: MA Run, SHU Yuan-hui, XIE Na, . Antioxidant effect of cannabidiol in mice with liver fibrosis[J]. Chinese Journal of Public Health, 2022, 38(2): 181-185. doi: 10.11847/zgggws1135692

大麻二酚对小鼠肝纤维化抗氧化作用

doi: 10.11847/zgggws1135692
基金项目: 国家自然科学基金(81860118;81460125);贵州省教育厅创新群体项目(黔教合KY字[2021]016);贵州省卫健委科学技术基金(gzwkj2021 – 119);贵州省科技计划项目(黔科合平台人才 [2019 – 5610])
详细信息
    作者简介:

    马润(1995 – ),女,四川资阳人,检验技师,硕士在读,研究方向:肝病临床免疫

    通信作者:

    王豫萍,E-mail:1500776978@qq.com

  • 中图分类号: R 575

Antioxidant effect of cannabidiol in mice with liver fibrosis

  • 摘要:   目的  探讨大麻二酚(CBD)对四氯化碳(CCL4)构建小鼠肝纤维化模型的抗氧化作用。  方法  C57BL/6J雄性小鼠随机分为5组,每组8只,依次为对照组,模型组,低、高剂量CBD组(4、8 mg/kg),秋水仙素组(0.2 mg/kg)。对照组小鼠腹腔注射花生油,剩余小鼠按照5 mL/kg注射30 % CCL4,每周2次,连续10周。CBD组和秋水仙素组在造模的同时每次注射相应剂量药物,对照组和模型组注射生理盐水。自动生化分析仪检测血清丙氨酸氨基转移酶(ALT);天狼星红染色检查肝组织胶原沉积情况;试剂盒检测肝组织氧化应激相关成分超氧化物歧化酶(SOD)、还原型谷胱甘肽(GSH)、丙二醛(MDA);蛋白印迹(WB)检测肝组织还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶亚基gp91phox、核转录相关因子(Nrf2)表达情况。  结果  与模型组比较,低、高剂量CBD组和秋水仙素组肝指数[分别为(4.71 ± 0.34)%、(4.68 ± 0.20)%、(4.24 ± 0.40)%]、血清ALT含量[分别为(79.38 ± 14.79)、(87.13 ± 9.40)、(77.88 ± 3.76)U/L]明显降低(P < 0.05),胶原沉积显著减少(P < 0.05),肝组织SOD活力[分别为(259.90 ± 36.05)、(223.13 ± 37.49)、(246.39 ± 53.49)U/mgprot]、GSH含量[分别为(63.07 ± 16.71)、(100.38 ± 22.44)、(96.39 ± 19.40)nmol/mgprot]明显增高(P < 0.05),而MDA含量[分别为(2.48 ± 0.43)、(2.74 ± 0.88)、(2.84 ± 0.87)nmol/mgprot]显著降低(P < 0.05),gp91蛋白表达降低(P < 0.05),Nrf2蛋白表达增加(P < 0.05)。  结论  CBD对CCL4诱导的小鼠肝纤维化有一定的保护作用,其作用机制可能与调节gp91、Nrf2蛋白表达,减少自由基、抑制脂质过氧化相关。
  • 图  1  CBD对小鼠肝组织外观形态影响

    注:A 对照组;B 模型组;C、D低、高剂量CBD组;E秋水仙素组。

    图  2  CBD对小鼠肝组织胶原结构影响(天狼星红染色,× 100)

    注:A 对照组;B 模型组;C、D低、高剂量CBD组;E秋水仙素组。

    图  3  CBD对小鼠肝组织gp91、Nrf2蛋白表达影响(WB)

    注:A 对照组;B 模型组;C、D低、高剂量CBD组;E秋水仙素组。

    表  1  CBD对小鼠肝指数、血清ALT及胶原面积影响(${\bar x}$ ± sn = 8)

    组别(mg/kg)肝指数(%)ALT(U/L)胶原面积百分比(%)
    对照组4.07 ± 0.3133.25 ± 2.380.29 ± 0.16
    模型组5.82 ± 0.79 a406.38 ± 98.73 a3.18 ± 0.93 a
     CBD 4.04.71 ± 0.34 ab79.38 ± 14.79 b1.27 ± 0.47 ab
    8.04.68 ± 0.20 ab87.13 ± 9.40 b1.72 ± 0.65 abc
    秋水仙素组4.24 ± 0.40 b77.88 ± 3.76 b1.17 ± 0.28 ab
      注:与对照组比较,a P < 0.05;与模型组比较,b P < 0.05;与秋水仙素组比较,c P < 0.05。
    下载: 导出CSV

    表  2  CBD对小鼠肝组织 SOD活力、GSH及MDA含量影响(${\bar x}$ ± sn = 8)

    组别(mg/kg)SOD(U/mg prot)GSH(nmol/mg prot)MDA(nmol/mg prot)
    对照组363.98 ± 51.3699.05 ± 20.892.33 ± 0.44
    模型组153.59 ± 25.08 a30.24 ± 4.34 a5.87 ± 1.15 a
     CBD 4.0259.90 ± 36.05 ab63.07 ± 16.71 abc2.48 ± 0.43 b
    8.0223.13 ± 37.49 ab100.38 ± 22.44 bd2.74 ± 0.88 b
    秋水仙素组246.39 ± 53.49 ab96.39 ± 19.40 b2.84 ± 0.87 b
      注:与对照组比较,a P < 0.05;与模型组比较,b P < 0.05;与秋水仙素组比较,c P < 0.05;与低剂量CBD组比较d P < 0.05。
    下载: 导出CSV

    表  3  CBD对小鼠肝组织gp91、Nrf2蛋白表达影响(${\bar x}$ ± s,n = 8)

    组别(mg/kg)gp91Nrf2
    对照组0.25 ± 0.061.13 ± 0.02
    模型组1.00 ± 0.03 a0.71 ± 0.02 a
     CBD 4.00.57 ± 0.03 abc0.97 ± 0.02 ab
    8.00.61 ± 0.07 abc0.94 ± 0.02 ab
    秋水仙素组0.25 ± 0.03 b1.00 ± 0.03 ab
      注:与对照组比较,a P < 0.05;与模型组比较,b P < 0.05;与秋水仙素组比较,c P < 0.05。
    下载: 导出CSV
  • [1] Guo YJ, Liang XM, Meng MY, et al. Hepatoprotective effects of Yulangsan flavone against carbon tetrachloride (CCl4)-induced hepatic fibrosis in rats[J]. Phytomedicine, 2017, 33: 28 – 35. doi: 10.1016/j.phymed.2017.07.005
    [2] Sun HT, Chen GX, Wen B, et al. Oligo-peptide I-C-F-6 inhibits hepatic stellate cell activation and ameliorates CCl4-induced liver fibrosis by suppressing NF-κB signaling and Wnt/β-catenin signaling[J]. Journal of Pharmacological Sciences, 2018, 136(3): 133 – 141. doi: 10.1016/j.jphs.2018.01.003
    [3] Aydın MM, Akçalı KC. Liver fibrosis[J]. The Turkish Journal of Gastroenterology, 2018, 29(1): 14 – 21. doi: 10.5152/tjg.2018.17330
    [4] Atalay S, Jarocka-Karpowicz I, Skrzydlewska E. Antioxidative and anti-inflammatory properties of cannabidiol[J]. Antioxidants (Basel), 2019, 9(1): 21. doi: 10.3390/antiox9010021
    [5] De Ternay J, Naassila M, Nourredine M, et al. Therapeutic prospects of cannabidiol for alcohol use disorder and alcohol-related damages on the liver and the brain[J]. Frontiers in Pharmacology, 2019, 10: 627. doi: 10.3389/fphar.2019.00627
    [6] Huang W, Zheng Y, Feng H, et al. Total phenolic extract of Euscaphis konishii hayata Pericarp attenuates carbon tetrachloride (CCl4)-induced liver fibrosis in mice[J]. Biomedicine and Pharmacotherapy, 2020, 125: 109932. doi: 10.1016/j.biopha.2020.109932
    [7] Rong C, Lee Y, Carmona NE, et al. Cannabidiol in medical marijuana: research vistas and potential opportunities[J]. Pharmacological Research, 2017, 121: 213 – 218. doi: 10.1016/j.phrs.2017.05.005
    [8] Iffland K, Grotenhermen F. An update on safety and side effects of cannabidiol: a review of clinical data and relevant animal studies[J]. Cannabis and Cannabinoid Research, 2017, 2(1): 139 – 154. doi: 10.1089/can.2016.0034
    [9] Weiss L, Zeira M, Reich S, et al. Cannabidiol arrests onset of autoimmune diabetes in NOD mice[J]. Neuropharmacology, 2008, 54(1): 244 – 249. doi: 10.1016/j.neuropharm.2007.06.029
    [10] 陈瑞, 高晓刚, 张雷, 等. 大麻二酚对大鼠非酒精性脂肪肝的治疗作用及机制[J]. 解放军医学杂志, 2017, 42(6): 515 – 519. doi: 10.11855/j.issn.0577-7402.2017.06.07
    [11] Yang LL, Rozenfeld R, Wu DF, et al. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy[J]. Free Radical Biology and Medicine, 2014, 68: 260 – 267. doi: 10.1016/j.freeradbiomed.2013.12.026
    [12] del Zoppo GJ, Frankowski H, Gu YH, et al. Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation[J]. Journal of Cerebral Blood Flow and Metabolism, 2012, 32(5): 919 – 932. doi: 10.1038/jcbfm.2012.11
    [13] Mukhopadhyay P, Rajesh M, Horváth B, et al. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflam-matory signaling and response, oxidative/nitrative stress, and cell death[J]. Free Radical Biology and Medicine, 2011, 50(10): 1368 – 1381. doi: 10.1016/j.freeradbiomed.2011.02.021
    [14] Han K, Zhang YT, Yang ZW. Cilostazol protects rats against alcohol-induced hepatic fibrosis via suppression of TGF-β1/CTGF activation and the cAMP/Epac1 pathway[J]. Experimental and Therapeutic Medicine, 2019, 17(3): 2381 – 2388.
    [15] Li X, Xing Y, Mao DC, et al. Codonopis bulleynana forest ex diels (cbFeD) effectively attenuates hepatic fibrosis in CCl4-induced fibrotic mice model[J]. Biomedicine and Pharmacotherapy, 2021, 133: 110960. doi: 10.1016/j.biopha.2020.110960
    [16] 赵杰, 齐永芬, 鱼艳荣. 氧化应激在肝纤维化发生发展中的作用[J]. 临床肝胆病杂志, 2019, 35(9): 2067 – 2071. doi: 10.3969/j.issn.1001-5256.2019.09.040
    [17] 胡晓霞, 王艳, 王妮. p38MAPK、NF-κB与氧化应激在肝纤维化中作用[J]. 中国公共卫生, 2013, 29(6): 834 – 836. doi: 10.11847/zgggws2013-29-06-17
    [18] 史云, 何萍, 孙建超, 等. 大麻素CB2受体激动剂AM1241对肝星状细胞影响[J]. 中国公共卫生, 2016, 32(5): 613 – 617. doi: 10.11847/zgggws2016-32-05-13
    [19] Li RD, Zhang P, Li CG, et al. Tert-butylhydroquinone mitigates carbon tetrachloride induced hepatic injury in mice[J]. International Journal of Medical Sciences, 2020, 17(14): 2095 – 2103. doi: 10.7150/ijms.45842
    [20] Santos CXC, Tanaka LY, Wosniak J Jr, et al. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase[J]. Antioxidants and Redox Signaling, 2009, 11(10): 2409 – 2427. doi: 10.1089/ars.2009.2625
    [21] Guichard C, Moreau R, Pessayre D, et al. NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes?[J]. Biochemical Society Transactions, 2008, 36(5): 920 – 929. doi: 10.1042/BST0360920
    [22] Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology[J]. Physiological Reviews, 2007, 87(1): 245 – 313. doi: 10.1152/physrev.00044.2005
    [23] 曾超, 陈静, 刘文兵, 等. 电针对脑缺血再灌注小鼠脑组织NOX2/gp91phox表达的影响[J]. 中国中医药科技, 2021, 28(1): 9 – 13.
    [24] Cuadrado A, Rojo AI, Wells G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases[J]. Nature Reviews Drug Discovery, 2019, 18(4): 295 – 317. doi: 10.1038/s41573-018-0008-x
    [25] Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Physiological Reviews, 2018, 98(3): 1169 – 1203. doi: 10.1152/physrev.00023.2017
    [26] Zhang CY, Yuan WG, He P, et al. Liver fibrosis and hepatic stellate cells: etiology, pathological hallmarks and therapeutic targets[J]. World Journal of Gastroenterology, 2016, 22(48): 10512 – 10522. doi: 10.3748/wjg.v22.i48.10512
    [27] Farr SA, Ripley JL, Sultana R, et al. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: involvement of transcription factor Nrf2 and implications for Alzheimer disease[J]. Free Radical Biology and Medicine, 2014, 67: 387 – 395. doi: 10.1016/j.freeradbiomed.2013.11.014
    [28] Vomund S, Schäfer A, Parnham MJ, et al. Nrf2, the master regulator of anti-oxidative responses[J]. International Journal of Molecular Sciences, 2017, 18(12): 2772. doi: 10.3390/ijms18122772
    [29] Wang YP, Mukhopadhyay P, Cao ZX, et al. Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflam-mation and neutrophil-mediated injury[J]. Scientific Reports, 2017, 7(1): 12064. doi: 10.1038/s41598-017-10924-8
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  283
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 接收日期:  2021-05-31
  • 网络出版日期:  2021-12-29
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回