高级检索
杨秀丽, 吴先进, 安仙蓉, 杨慧兰, 管俊欢, 梁冰. 亚慢性砷暴露对大鼠肝脏糖代谢影响[J]. 中国公共卫生, 2022, 38(9): 1193-1198. DOI: 10.11847/zgggws1137549
引用本文: 杨秀丽, 吴先进, 安仙蓉, 杨慧兰, 管俊欢, 梁冰. 亚慢性砷暴露对大鼠肝脏糖代谢影响[J]. 中国公共卫生, 2022, 38(9): 1193-1198. DOI: 10.11847/zgggws1137549
YANG Xiu-li, WU Xian-jin, AN Xian-rong, YANG Hui-lan, GUAN Jun-huan, LIANG Bing. Effect of subchronic arsenic exposure on hepatic glucose metabolism in rats[J]. Chinese Journal of Public Health, 2022, 38(9): 1193-1198. DOI: 10.11847/zgggws1137549
Citation: YANG Xiu-li, WU Xian-jin, AN Xian-rong, YANG Hui-lan, GUAN Jun-huan, LIANG Bing. Effect of subchronic arsenic exposure on hepatic glucose metabolism in rats[J]. Chinese Journal of Public Health, 2022, 38(9): 1193-1198. DOI: 10.11847/zgggws1137549

亚慢性砷暴露对大鼠肝脏糖代谢影响

Effect of subchronic arsenic exposure on hepatic glucose metabolism in rats

  • 摘要:
      目的  探讨亚慢性砷暴露对大鼠肝脏糖代谢的影响及相关分子机制。
      方法  以SD大鼠为研究对象,实验设对照组(灌胃蒸馏水)、亚砷酸钠(NaAsO2 )高、中、低剂量组(8、4、2 mg/kg,灌胃NaAsO2)。连续12周。记录大鼠体重,第12周口服葡萄糖耐量试验(OGTT)检测葡萄糖耐受情况。12周后处死大鼠,取毛发和肝脏,检测毛发砷含量、肝脏糖原含量、己糖激酶和丙酮酸激酶活性;观察肝脏病理变化;检测糖代谢相关蛋白磷脂酰肌醇 – 3 – 激酶(PI3K)、蛋白激酶B(AKT)、糖原合成酶激酶 – 3β(GSK3β)、磷酸化糖原合成酶激酶 – 3β(P-GSK3β)、葡萄糖转运体2(GLUT2)、葡萄糖转运体4(GLUT4)表达情况。
      结果  统计大鼠体重变化发现,亚砷酸钠高、中剂量组雄性和雌性大鼠体重在第8、12周时有所降低;与对照组0.43 ± 0.08mg/kg相比,NaAsO2高、中、低剂量组(49.24 ± 8.02)、(21.06 ± 3.42)、(14.59 ± 2.00)mg/kg毛发砷含量明显升高(P<0.05);大鼠葡萄糖耐量异常、肝脏糖原含量降低;与对照组己糖激酶、丙酮酸激酶(2.84 ± 0.08)、(55.95 ± 0.96)(U/mg)活性相比,NaAsO2高、中剂量组己糖激酶(1.94 ± 0.11)、(2.14 ± 0.03)(U/mg)、丙酮酸激酶(43.64 ± 1.05)、(44.26 ± 0.10)(U/mg)活性降低(P<0.05);病理结果显示,NaAsO2高、中剂量组肝细胞轻度脂肪变性,有较多圆形空泡产生;WB结果表明,与对照组PI3K(1.03 ± 0.02)、AKT(1.36 ± 0.02)、P-GSK3β/ GSK3β(0.96 ± 0.04)、GLUT2(1.24 ± 0.12)、GLUT4(1.80 ± 0.15)相比,NaAsO2高剂量组PI3K0.76 ± 0.06、AKT1.19 ± 0.04、P-GSK3β/GSK3β0.76 ± 0.03、GLUT20.82 ± 0.11和GLUT40.88 ± 0.14蛋白表达降低,NaAsO2中剂量组AKT1.08 ± 0.10、GLUT41.38 ± 0.10蛋白表达降低,NaAsO2低剂量组GLUT41.10 ± 0.12蛋白表达降低(P<0.05)。
      结论   亚慢性砷暴露可致大鼠肝脏糖代谢紊乱,其机制可能与改变糖原含量、影响糖代谢相关酶活性和相关蛋白表达有关 。

     

    Abstract:
      Objective  To investigate the effect of subchronic arsenic exposure on hepatic glucose metabolism and its molecular mechanism in rats.
      Methods  Totally 40 Sprague-Dawley (SD) rats were randomly divided into a control group (with intragastric administration of distilled water) and three groups with intragastric administration of sodium arsenite (NaAsO2) at doses of 2, 4, 8 mg/kg once a week continuously for 12 weeks. The body weight of the rats was recorded weekly. By the end of the administrations, oral glucose tolerance test (OGTT) was performed and samples of hair and liver were collected for all the rats. The content of arsenic in hair, the content of glycogen in liver and the activities of hexokinase (HK) and pyruvate kinase (PK) were detected. Ppathological changes of liver were observed. The expressions of phosphoinosistide 3-kinase (PI3K), protein kinase B (AKT), glycogen synthase kinase-3 β (GSK3β), phosphorylated glycogen synthase kinase-3 β(P-GSK3β), glucose transporter 2 (GLUT2) and glucose transporter 4 (GLUT4) were determined with Western blot.
      Results  The body weight decreased at 8th and 12th week for the rats exposed to high and moderate NaAsO2. Significantly higher hair arsenic content (mg/kg) was measured in the rats exposed to high/moderate/low NaAsO2 compared with that of control rats (49.24 ± 8.02/21.06 ± 3.42/14.59 ± 2.00 vs. 0.43 ± 0.08; all P < 0.05). Abnormal glucose tolerance and decreased liver glycogen were also detected in the rats with NaAsO2 exposure. In comparison to control rats, the rats treated with high/moderate NaAsO2 had significantly decreased HK (1.94 ± 0.11/2.14 ± 0.03 vs. 2.84 ± 0.08) U/mg and PK (43.64 ± 1.05/44.26 ± 0.10 vs. 55.95 ± 0.96) U/mg (P < 0.05 for all). Pathological observation revealed mild hepatic steatosis and increased round vacuoles of hepatocytes in the rats with high and moderate NaAsO2 treatment. Contrasted to the protein expressions of PI3K (1.03 ± 0.02), AKT (1.36 ± 0.02), P-GSK3β/GSK3β (0.96 ± 0.04), GLUT2 (1.24 ± 0.12), and GLUT4 (1.80 ± 0.15) in the control rats, following significantly decreased protein expressions were identified in the rats exposed to various doses of NaAsO2: PI3K (0.76 ± 0.06), AKT (1.19 ± 0.04), P-GSK3β/GSK3β(0.76 ± 0.03), GLUT2 (0.82 ± 0.11), and GLUT4 (0.88 ± 0.14) in the rats treated with high dose; AKT (1.08 ± 0.10) and GLUT4 (1.38 ± 0.10) in the rats with moderate dose; and GLUT4 (1.10 ± 0.12) in the rats with low dose (all P < 0.05 ).
      Conclusion  Subchronic arsenic exposure can induce hepatic glucose metabolism disorder in rats; the effect may be related to changes in hepatic glycogen, activities of glucose metabolic enzymes, and expressions of relevant proteins.

     

/

返回文章
返回