高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新冠疫情防控中NPIs与疫苗覆盖效果分析 —— 基于澳大利亚、韩国、新加坡、以色列、印度5个国家生态比较研究

闫温馨 朱正 吴昀效 付张萍 商伟静 康良钰 刘珏 刘民

闫温馨, 朱正, 吴昀效, 付张萍, 商伟静, 康良钰, 刘珏, 刘民. 新冠疫情防控中NPIs与疫苗覆盖效果分析 —— 基于澳大利亚、韩国、新加坡、以色列、印度5个国家生态比较研究[J]. 中国公共卫生, 2022, 38(5): 597-603. doi: 10.11847/zgggws1138325
引用本文: 闫温馨, 朱正, 吴昀效, 付张萍, 商伟静, 康良钰, 刘珏, 刘民. 新冠疫情防控中NPIs与疫苗覆盖效果分析 —— 基于澳大利亚、韩国、新加坡、以色列、印度5个国家生态比较研究[J]. 中国公共卫生, 2022, 38(5): 597-603. doi: 10.11847/zgggws1138325
YAN Wen-xin, ZHU Zheng, WU Yun-xiao, . Effectiveness of NPIs and vaccine coverage in the prevention and control of COVID-19 epidemic – an ecological comparative study among Australia, Korea, Singapore, Israel and India[J]. Chinese Journal of Public Health, 2022, 38(5): 597-603. doi: 10.11847/zgggws1138325
Citation: YAN Wen-xin, ZHU Zheng, WU Yun-xiao, . Effectiveness of NPIs and vaccine coverage in the prevention and control of COVID-19 epidemic – an ecological comparative study among Australia, Korea, Singapore, Israel and India[J]. Chinese Journal of Public Health, 2022, 38(5): 597-603. doi: 10.11847/zgggws1138325

新冠疫情防控中NPIs与疫苗覆盖效果分析 —— 基于澳大利亚、韩国、新加坡、以色列、印度5个国家生态比较研究

doi: 10.11847/zgggws1138325
基金项目: 国家自然科学基金(71934002;72122001);科技部国家科技创新2030重大项目(2021ZD0114101;2021ZD0114104;2021ZD0114105);首都卫生发展科研专项公共卫生项目(首发 2021 – 1G – 4281)
详细信息
    作者简介:

    闫温馨(2000 – ),男,黑龙江绥化人,硕士在读,主要研究方向:传染病流行病学

    通信作者:

    刘民,E-mail:liumin@bjmu.edu.cn

  • (朱正为本文并列第一作者)
  • 中图分类号: R 184.6

Effectiveness of NPIs and vaccine coverage in the prevention and control of COVID-19 epidemic – an ecological comparative study among Australia, Korea, Singapore, Israel and India

  • 摘要:   目的   通过比较澳大利亚、韩国、新加坡、以色列、印度5个国家在检测、控制传播和疫苗接种方面的举措与成效,为全球疫情防控策略提供建议或证据支持。  方法  从Our World in Data 网站获取澳大利亚、韩国、新加坡、以色列、印度5个国家2020年1月21日 — 2021年12月31日新冠疫情相关数据, 通过比较每日检测人数与每日新增病例数、牛津 – 紧缩指数与每日新增病例数、每百人完全接种新冠疫苗人数与每日新增死亡数的关系,结合国家基本特征,研究分析各国在寻找传染源、切断传播途径、保护易感人群方面所执行的非药物干预措施和疫苗接种工作的效果。  结果  增大检测力度在一定程度上控制了疫情进一步流行,且多在检测数达到顶峰后新增确诊人数开始下降;在疫情形势趋于严峻时,各国牛津 – 紧缩指数升高,随着疫情趋于缓和,该指数有所下降,但易导致疫情反弹;随着疫苗完全接种率的升高,新冠肺炎病死率有所下降。  结论  世界各国应积极借鉴国际经验,紧密结合本国国情,遵循流行病学规律,从控制传染源、切断传播途径和保护易感人群三个方面入手,积极采取NPIs、大力推进新冠疫苗及加强针的普及接种与进一步研发,共同应对这一全球性公共卫生问题挑战。
    1)  (朱正为本文并列第一作者)
  • 图  1  每日检测人数与每日新增确诊人数变化图

    注:A:澳大利亚;B:韩国;C:新加坡;D:以色列;E:印度。

    图  2  牛津 – 紧缩指数与每日新增确诊人数变化图

    注:A:澳大利亚;B:韩国;C:新加坡;D:以色列;E:印度。

    图  3  每百人完全接种疫苗人数与每日新增死亡数变化图

    注:A:澳大利亚;B:韩国;C:新加坡;D:以色列;E:印度。

    表  1  各国基本特征(截至2021年12月31日)

    特征/评价指标澳大利亚韩国新加坡以色列印度
    人口(百万) 25.79 51.31 5.45 9.29 1393.41
    人口密度(人/每平方千米) 3.20 527.97 7915.73 402.61 450.42
    65岁及以上人口比例(%) 15.50 13.91 12.92 11.73 5.99
    人均GDP($) 44648.71 35938.37 85535.38 33132.32 6426.67
    极端贫穷(%) 0.5 0.2 0.5 21.2
    每千人病床数 3.84 12.27 2.40 2.99 0.53
    期望寿命(岁) 83.44 83.03 83.62 82.97 69.66
    累计确诊病例数(/百万) 15625.314 12381.848 51233.13 148954.042 25018.913
    累计死亡病例数(/百万) 87.172 109.638 151.826 887.203 345.545
    累计检测数(/千人) 2131.166 306.612 a 3868.779 b 3844.731 486.489
    牛津 – 紧缩指数
     中位数(IQR) 68.06(53.24~71.76) 52.78(47.22~58.33) 50.93(45.37~50.93) 60.19(52.78~75.00) 70.83(61.57~81.94)
     最大值 78.24 82.41 82.41 94.44 100.00
    疫苗接种开始时间 2021/2/20 2021/2/25 2021/1/11 2020/12/19 2021/1/15
    病死率(%) 0.53 0.89 0.30 0.60 1.38
    疫苗接种开始前一日病死率(%) 3.14 1.79 0.05 0.83 1.44
    加强针接种开始时间 2021/10/6 2021/4/9 2021/9/27 2021/6/30
    每百人完全接种疫苗人数 76.61 82.92 87.00 63.75 43.29
    加强针覆盖率(%) 9.23 35.96 11.41 45.73
    主要疫苗 辉瑞/阿斯利康 辉瑞/阿斯利康 辉瑞/科兴 辉瑞 阿斯利康/Covaxin
      注:a 韩国每千人累计检测数截止时间为2021/10/29;b 新加坡每千人累计检测数截止时间为2021/11/8。
    下载: 导出CSV
  • [1] Ferguson N, Laydon D, Nedjati Gilani G, et al. Report 9: impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand[J]. Imperial College London, 2020, 10(77482): 491 – 497.
    [2] World Health Organization. Coronavirus (COVID-19) dashboard[EB/OL]. (2022 – 01 – 21)[2022 – 01 – 21].https://covid19.who.int/.
    [3] Saxena SK, Kumar S, Ansari S, et al. Transmission dynamics and mutational prevalence of the novel severe acute respiratory syndrome coronavirus - 2 omicron variant of concern[J]. Journal of Medical Virology, 2022, 94(5): 2160 – 2166. doi: 10.1002/jmv.27611
    [4] CDC. Nonpharmaceutical Interventions (NPIs)[EB/OL]. (2022 – 01 – 21)[2022 – 01 – 21].https://www.cdc.gov/nonpharmaceutical-interventions/index.html.
    [5] Desvars-Larrive A, Dervic E, Haug N, et al. A structured open dataset of government interventions in response to COVID - 19[J]. Scientific Data, 2020, 7(1): 285. doi: 10.1038/s41597-020-00609-9
    [6] Cowling BJ, Ali ST, Ng TWY, et al. Impact assessment of non - pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study[J]. The Lancet Public Health, 2020, 5(5): e279 – e288. doi: 10.1016/S2468-2667(20)30090-6
    [7] Haug N, Geyrhofer L, Londei A, et al. Ranking the effectiveness of worldwide COVID - 19 government interventions[J]. Nature Human Behaviour, 2020, 4(12): 1303 – 1312. doi: 10.1038/s41562-020-01009-0
    [8] Salathé M, Althaus CL, Neher R, et al. COVID - 19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation[J]. Swiss Medical Weekly, 2020, 150: w20225.
    [9] Lurie N, Saville M, Hatchett R, et al. Developing Covid - 19 vaccines at pandemic speed[J]. The New England Journal of Medicine, 2020, 382(21): 1969 – 1973. doi: 10.1056/NEJMp2005630
    [10] Ritchie H, Mathieu E, Rodés-Guirao L, et al. Coronavirus Pandemic (COVID-19)[EB/OL]. (2022 – 01 – 21)[2022 – 01 – 21].https://ourworldindata.org/coronavirus.
    [11] Chan JFW, Yuan SF, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person - to - person transmission: a study of a family cluster[J]. The Lancet, 2020, 395(10223): 514 – 523. doi: 10.1016/S0140-6736(20)30154-9
    [12] Jeong E, Hagose M, Jung H, et al. Understanding South Korea's response to the COVID - 19 outbreak: a real - time analysis[J]. International Journal of Environmental Research and Public Health, 2020, 17(24): 9571. doi: 10.3390/ijerph17249571
    [13] Wong JEL, Leo YS, Tan CC. COVID - 19 in Singapore – current experience: critical global issues that require attention and action[J]. JAMA, 2020, 323(13): 1243 – 1244. doi: 10.1001/jama.2020.2467
    [14] Yoo JY, Dutra SVO, Fanfan D, et al. Comparative analysis of COVID - 19 guidelines from six countries: a qualitative study on the US, China, South Korea, the UK, Brazil, and Haiti[J]. BMC Public Health, 2020, 20(1): 1853. doi: 10.1186/s12889-020-09924-7
    [15] Chen YY, Assefa Y. The heterogeneity of the COVID - 19 pandemic and national responses: an explanatory mixed - methods study[J]. BMC Public Health, 2021, 21(1): 835. doi: 10.1186/s12889-021-10885-8
    [16] Von Seidlein L, Alabaster G, Deen J, et al. Crowding has consequences: prevention and management of COVID - 19 in informal urban settlements[J]. Building and Environment, 2021, 188: 107472. doi: 10.1016/j.buildenv.2020.107472
    [17] Bhuyan A. Experts criticise India's complacency over COVID-19[J]. The Lancet, 2021, 397(10285): 1611 – 1612. doi: 10.1016/S0140-6736(21)00993-4
    [18] Patel AK, Mukherjee S, Leifels M, et al. Mega festivals like MahaKumbh, a largest mass congregation, facilitated the transmission of SARS - CoV - 2 to humans and endangered animals via contaminated water[J]. International Journal of Hygiene and Environmental Health, 2021, 237: 113836. doi: 10.1016/j.ijheh.2021.113836
    [19] Quadri SA, Padala PR. An aspect of Kumbh mela massive gathering and COVID - 19[J]. Current Tropical Medicine Reports, 2021, 8(3): 225 – 230. doi: 10.1007/s40475-021-00238-1
    [20] Yang W, Shaman J. COVID-19 pandemic dynamics in India, the SARS-CoV-2 Delta variant, and implications for vaccination[J]. medRxiv, 2021,doi: 10.1101/2021.06.21.21259268.
    [21] Mathieu E, Ritchie H, Ortiz-Ospina E, et al. A global database of COVID - 19 vaccinations[J]. Nature Human Behaviour, 2021, 5(7): 947 – 953. doi: 10.1038/s41562-021-01122-8
    [22] Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS - CoV - 2 omicron variant in South Africa: a data linkage study[J]. Lancet, 2022, 399(10323): 437 – 446. doi: 10.1016/S0140-6736(22)00017-4
    [23] Bernal JL, Andrews N, Gower C, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study[J]. BMJ, 2021, 373: n1088.
    [24] Dagan N, Barda N, Kepten E, et al. BNT162b2 mRNA Covid - 19 vaccine in a nationwide mass vaccination setting[J]. The New England Journal of Medicine, 2021, 384(15): 1412 – 1423. doi: 10.1056/NEJMoa2101765
    [25] Abu-Raddad LJ, Chemaitelly H, Butt AA. Effectiveness of the BNT162b2 Covid - 19 vaccine against the B. 1.1. 7 and B. 1.351 variants[J]. The New England Journal of Medicine, 2021, 385(2): 187 – 189. doi: 10.1056/NEJMc2104974
    [26] Bernal JL, Andrews N, Gower C, et al. Effectiveness of Covid - 19 vaccines against the B. 1.617. 2 (Delta) variant[J]. The New England Journal of Medicine, 2021, 385(7): 585 – 594. doi: 10.1056/NEJMoa2108891
    [27] Coccia M. High health expenditures and low exposure of population to air pollution as critical factors that can reduce fatality rate in COVID - 19 pandemic crisis: a global analysis[J]. Environmental Research, 2021, 199: 111339. doi: 10.1016/j.envres.2021.111339
    [28] Tada T, Zhou H, Dcosta BM, et al. Partial resistance of SARS - CoV - 2 delta variants to vaccine - elicited antibodies and convalescent sera[J]. iScience, 2021, 24(11): 103341. doi: 10.1016/j.isci.2021.103341
    [29] Chia PY, Ong SWX, Chiew CJ, et al. Virological and serological kinetics of SARS-CoV-2 delta variant vaccine breakthrough infections: a multicentre cohort study[J]. Clinical Microbiology and Infection, 2021,doi: 10.1016/j.cmi.2021.11.010.
    [30] Nguyen KV. Problems associated with antiviral drugs and vaccines development for COVID - 19: approach to intervention using expression vectors via GPI anchor[J]. Nucleosides, Nucleotides and Nucleic Acids, 2021, 40(6): 665 – 706. doi: 10.1080/15257770.2021.1914851
    [31] Eubank S, Eckstrand I, Lewis B, et al. Commentary on ferguson, et al. , "Impact of non - pharmaceutical interventions (NPIs) to reduce COVID - 19 mortality and healthcare demand"[J]. Bulletin of Mathematical Biology, 2020, 82(4): 52. doi: 10.1007/s11538-020-00726-x
    [32] Patel MD, Rosenstrom E, Ivy JS, et al. The joint impact of COVID-19 vaccination and non-pharmaceutical interventions on infections, hospitalizations, and mortality: an agent-based simula-tion[J]. medRxiv, 2021,doi: 10.1101/2020.12.30.20248888.
    [33] Miller NL, Clark T, Raman R, et al. Insights on the mutational landscape of the SARS - CoV - 2 omicron variant receptor-binding domain[J]. Cell Reports Medicine, 2021, 3(2): 100527.
    [34] Garrett N, Tapley A, Andriesen J, et al. High rate of asymptomatic carriage associated with variant strain omicron[J]. medRxiv, 2022,doi: 10.1101/2021.12.20.21268130.
    [35] Cele S, Jackson L, Khoury DS, et al. SARS-CoV-2 omicron has extensive but incomplete escape of pfizer BNT162b2 elicited neutralization and requires ACE2 for infection[J]. medRxiv, 2021,doi: 10.1101/2021.12.08.21267417.
    [36] Davies MA, Kassanjee R, Rosseau P, et al. Outcomes of laboratory-confirmed SARS-CoV-2 infection in the Omicron-driven fourth wave compared with previous waves in the Western Cape Province, South Africa[J]. medRxiv, 2022,doi: 10.1101/2022.01.12.22269148.
    [37] Andrews N, Tessier E, Stowe J, et al. Duration of protection against mild and severe disease by covid - 19 vaccines[J]. The New England Journal of Medicine, 2022, 386(4): 340 – 350. doi: 10.1056/NEJMoa2115481
    [38] Andrews N, Stowe J, Kirsebom F, et al. Effectiveness of COVID-19 vaccines against the Omicron (B. 1.1. 529) variant of concern[J]. medRxiv, 2021,doi: 10.1101/2021.12.14.21267615.
    [39] 吴俣, 刘珏, 刘民, 等. 新型冠状病毒Omicron变异株的流行病学特征及防控研究[J]. 中国全科医学, 2022, 25(1): 14 – 19.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  1012
  • HTML全文浏览量:  326
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 接收日期:  2022-02-18
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回