Advance Search
Volume 39 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LUO Qiang, LUO Ya-nan, FENG Na-na, . Advances in early diagnosis of Alzheimer′s disease: an overview[J]. Chinese Journal of Public Health, 2023, 39(3): 394-399. doi: 10.11847/zgggws1138613
Citation: LUO Qiang, LUO Ya-nan, FENG Na-na, . Advances in early diagnosis of Alzheimer′s disease: an overview[J]. Chinese Journal of Public Health, 2023, 39(3): 394-399. doi: 10.11847/zgggws1138613

Advances in early diagnosis of Alzheimer′s disease: an overview

doi: 10.11847/zgggws1138613
  • Received Date: 2022-03-24
    Available Online: 2023-01-10
  • Publish Date: 2023-03-10
  • Alzheimer′s disease (AD) is one of the diseases which cause disability and mortality in older adults. Early diagnosis is of great significance for delaying the development of AD and its related function decline, which can help to achieve the aim of healthy aging. This study reviewed current research about the prediction and early diagnosis of AD, which included literature review on the fields of the development and frontiers of early diagnosis technology in humoral markers, blood markers, cognitive markers detection and digital markers. The study provides the conceptual ideas to help identify the high - risk groupsand deliver interventions accurately, and provides important reference for early diagnosis of the disease in older adults.
  • loading
  • [1]
    World Health Organization. Global status report on the public health response to dementia[R]. Geneva: World Health Organiza-tion, 2021.
    [2]
    Jia LF, Quan MN, Fu Y, et al. Dementia in China: epidemiology, clinical management, and research advances[J]. The Lancet Neur-ology, 2020, 19(1): 81 – 92. doi: 10.1016/S1474-4422(19)30290-X
    [3]
    Golde TE, DeKosky ST, Galasko D. Alzheimer′s disease: the right drug, the right time[J]. Science, 2018, 362(6420): 1250 – 1251. doi: 10.1126/science.aau0437
    [4]
    Jack Jr CR, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer′s disease[J]. Alzheimer′s and Dementia, 2018, 14(4): 535 – 562. doi: 10.1016/j.jalz.2018.02.018
    [5]
    Arzheimer′s Association. 2022 Alzheimer′s disease facts and figures[J]. Alzheimer’s and Dementia, 2022, 18(4): 700 – 789. doi: 10.1002/alz.12638
    [6]
    Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. The Lancet, 2020, 396(10248): 413 – 446. doi: 10.1016/S0140-6736(20)30367-6
    [7]
    ALZFORUM. AlzBiomarker AD vs CTRL[EB/OL]. (2016 – 04 – 18)[2022 – 09 – 26]. https://www.alzforum.org/alzbiomarker/ad-vs-ctrl.
    [8]
    Janelidze S, Stomrud E, Smith R, et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer′s disease[J]. Nature Communications, 2020, 11(1): 1683. doi: 10.1038/s41467-020-15436-0
    [9]
    Barthélemy NR, Li Y, Joseph-Mathurin N, et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer′s disease[J]. Nature Medicine, 2020, 26(3): 398 – 407. doi: 10.1038/s41591-020-0781-z
    [10]
    Liu WL, Lin HW, He XJ, et al. Neurogranin as a cognitive bio-marker in cerebrospinal fluid and blood exosomes for Alzheimer′s disease and mild cognitive impairment[J]. Translational Psychiatry, 2020, 10(1): 125. doi: 10.1038/s41398-020-0801-2
    [11]
    Zhang H, Therriault J, Kang MS, et al. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer′s disease[J]. Alzheimer′s Research and Therapy, 2018, 10(1): 80. doi: 10.1186/s13195-018-0407-6
    [12]
    Simoes S, Neufeld JL, Triana-Baltzer G, et al. Tau and other proteins found in Alzheimer’s disease spinal fluid are linked to retromer-mediated endosomal traffic in mice and humans[J]. Science Translational Medicine, 2020, 12(571): eaba6334. doi: 10.1126/scitranslmed.aba6334
    [13]
    Mattsson N, Andreasson U, Persson S, et al. CSF biomarker variability in the Alzheimer′s Association quality control program[J]. Alzheimer′s and Dementia, 2013, 9(3): 251 – 261. doi: 10.1016/j.jalz.2013.01.010
    [14]
    Willemse EAJ, Tijms BM, Van Berckel BNM, et al. Comparing CSF amyloid-beta biomarker ratios for two automated immuno-assays, Elecsys and Lumipulse, with amyloid PET status[J]. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13(1): e12182.
    [15]
    Hansson O, Seibyl J, Stomrud E, et al. CSF biomarkers of Alzheimer′s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts[J]. Alzheimer’s and Dementia, 2018, 14(11): 1470 – 1481. doi: 10.1016/j.jalz.2018.01.010
    [16]
    Leitão MJ, Silva-Spínola A, Santana I, et al. Clinical validation of the Lumipulse G cerebrospinal fluid assays for routine diagnosis of Alzheimer′s disease[J]. Alzheimer′s Research and Therapy, 2019, 11(1): 91. doi: 10.1186/s13195-019-0550-8
    [17]
    Janelidze S, Pannee J, Mikulskis A, et al. Concordance between different amyloid immunoassays and visual amyloid positron emission tomographic assessment[J]. JAMA Neurology, 2017, 74(12): 1492 – 1501. doi: 10.1001/jamaneurol.2017.2814
    [18]
    Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer′s disease pathology[J]. Acta Neuropathologica, 2021, 141(5): 709 – 724. doi: 10.1007/s00401-021-02275-6
    [19]
    Janelidze S, Berron D, Smith R, et al. Associations of plasma phospho-Tau217 levels with tau positron emission tomography in early Alzheimer disease[J]. JAMA Neurology, 2021, 78(2): 149 – 156. doi: 10.1001/jamaneurol.2020.4201
    [20]
    Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neuro-degenerative disorders[J]. JAMA, 2020, 324(8): 772 – 781. doi: 10.1001/jama.2020.12134
    [21]
    Brickman AM, Manly JJ, Honig LS, et al. Plasma p-tau181, p-tau217, and other blood-based Alzheimer′s disease biomarkers in a multi-ethnic, community study[J]. Alzheimer′s and Dementia, 2021, 17(8): 1353 – 1364. doi: 10.1002/alz.12301
    [22]
    Janelidze S, Teunissen CE, Zetterberg H, et al. Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in Alzheimer disease[J]. JAMA Neurology, 2021, 78(11): 1375 – 1382. doi: 10.1001/jamaneurol.2021.3180
    [23]
    Ashton NJ, Janelidze S, Khleifat AA, et al. A multicentre validation study of the diagnostic value of plasma neurofilament light[J]. Nature Communications, 2021, 12(1): 3400. doi: 10.1038/s41467-021-23620-z
    [24]
    Jagust WJ, Landau SM. Temporal dynamics of β-amyloid accumula-tion in aging and Alzheimer disease[J]. Neurology, 2021, 96(9): e1347 – e1357. doi: 10.1212/WNL.0000000000011524
    [25]
    Villemagne VL, Doré V, Burnham SC, et al. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other condi-tions[J]. Nature Reviews Neurology, 2018, 14(4): 225 – 236. doi: 10.1038/nrneurol.2018.9
    [26]
    Uzuegbunam BC, Librizzi D, Yousefi BH. PET radiopharmaceuticals for Alzheimer′s disease and Parkinson′s disease diagnosis, the current and future landscape[J]. Molecules, 2020, 25(4): 977. doi: 10.3390/molecules25040977
    [27]
    Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study[J]. The Lancet Neurology, 2012, 11(8): 669 – 678. doi: 10.1016/S1474-4422(12)70142-4
    [28]
    Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer′s disease with Pittsburgh Compound-B[J]. Annals of Neurology, 2004, 55(3): 306 – 319. doi: 10.1002/ana.20009
    [29]
    Bourgeat P, Chételat G, Villemagne VL, et al. β-Amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia[J]. Neurology, 2010, 74(2): 121 – 127. doi: 10.1212/WNL.0b013e3181c918b5
    [30]
    Villemagne VL, Pike KE, Chételat G, et al. Longitudinal assess-ment of Aβ and cognition in aging and Alzheimer disease[J]. Annals of Neurology, 2011, 69(1): 181 – 192. doi: 10.1002/ana.22248
    [31]
    Jack Jr CR, Therneau TM, Weigand SD, et al. Prevalence of biologically vs clinically defined Alzheimer spectrum entities using the National Institute on Aging-Alzheimer’s Association research framework[J]. JAMA Neurology, 2019, 76(10): 1174 – 1183. doi: 10.1001/jamaneurol.2019.1971
    [32]
    Franzmeier N, Neitzel J, Rubinski A, et al. Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease[J]. Nature Communications, 2020, 11(1): 347. doi: 10.1038/s41467-019-14159-1
    [33]
    Joie RL, Visani AV, Baker SL, et al. Prospective longitudinal atrophy in Alzheimer′s disease correlates with the intensity and topography of baseline tau-PET[J]. Science Translational Medicine, 2020, 12(524): eaau5732. doi: 10.1126/scitranslmed.aau5732
    [34]
    Ossenkoppele R, Rabinovici GD, Smith R, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders[J]. JAMA, 2018, 320(11): 1151 – 1162. doi: 10.1001/jama.2018.12917
    [35]
    Lu M, Pontecorvo MJ, Devous Sr MD, et al. Aggregated tau measured by visual interpretation of flortaucipir positron emission tomography and the associated risk of clinical progression of mild cognitive impairment and Alzheimer disease: results from 2 phase III clinical trials[J]. JAMA Neurology, 2021, 78(4): 445 – 453. doi: 10.1001/jamaneurol.2020.5505
    [36]
    Wang WY, Yu JT, Liu Y, et al. Voxel-based meta-analysis of grey matter changes in Alzheimer′s disease[J]. Translational Neurode-generation, 2015, 4(1): 6. doi: 10.1186/s40035-015-0027-z
    [37]
    Apostolova LG, Dutton RA, Dinov ID, et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps[J]. Archives of Neurology, 2006, 63(5): 693 – 699. doi: 10.1001/archneur.63.5.693
    [38]
    Ferrarini L, Van Lew B, Reiber JHC, et al. Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study[J]. International Psychogeriatrics, 2014, 26(7): 1067 – 1081. doi: 10.1017/S1041610213002627
    [39]
    Iaccarino L, Sala A, Perani D, et al. Predicting long-term clinical stability in amyloid-positive subjects by FDG-PET[J]. Annals of Clinical and Translational Neurology, 2019, 6(6): 1113 – 1120. doi: 10.1002/acn3.782
    [40]
    Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer′s disease in persons homozygous for the ε4 allele for apolipoprotein E[J]. The New England Journal of Medicine, 1996, 334(12): 752 – 758. doi: 10.1056/NEJM199603213341202
    [41]
    Laforce Jr R, Tosun D, Ghosh P, et al. Parallel ICA of FDG-PET and PiB-PET in three conditions with underlying Alzheimer′s pathology[J]. NeuroImage:Clinical, 2014, 4: 508 – 516. doi: 10.1016/j.nicl.2014.03.005
    [42]
    Reiman EM, Chen KW, Alexander GE, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer′s dementia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(1): 284 – 289. doi: 10.1073/pnas.2635903100
    [43]
    Herholz K, Salmon E, Perani D, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET[J]. NeuroImage, 2002, 17(1): 302 – 316. doi: 10.1006/nimg.2002.1208
    [44]
    Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer′s disease: advances in genetics, pathophysiology, and therapeutic approaches[J]. The Lancet Neurology, 2021, 20(1): 68 – 80. doi: 10.1016/S1474-4422(20)30412-9
    [45]
    Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician[J]. Journal of Psychiatric Research, 1975, 12(3): 189 – 198. doi: 10.1016/0022-3956(75)90026-6
    [46]
    Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cog-nitive Assessment, MoCA: a brief screening tool for mild cognitive impairment[J]. Journal of the American Geriatrics Society, 2005, 53(4): 695 – 699. doi: 10.1111/j.1532-5415.2005.53221.x
    [47]
    Molnar FJ, Man-Son-Hing M, Fergusson D. Systematic review of measures of clinical significance employed in randomized controlled trials of drugs for dementia[J]. Journal of the American Geriatrics Society, 2009, 57(3): 536 – 546. doi: 10.1111/j.1532-5415.2008.02122.x
    [48]
    王凤. 中文版罗兰通用痴呆症量表的信效度检验及其与MMSE测试性能的对比研究[D]. 湖州: 湖州师范学院, 2020.
    [49]
    Tsoi KKF, Chan JYC, Hirai HW, et al. Cognitive tests to detect dementia: a systematic review and meta-analysis[J]. JAMA Internal Medicine, 2015, 175(9): 1450 – 1458. doi: 10.1001/jamainternmed.2015.2152
    [50]
    Ranson JM, Kuźma E, Hamilton W, et al. Predictors of dementia misclassification when using brief cognitive assessments[J]. Neur-ology: Clinical Practice, 2019, 9(2): 109 – 117. doi: 10.1212/CPJ.0000000000000566
    [51]
    中华医学会神经病学分会神经心理与行为神经病学学组. 常用神经心理认知评估量表临床应用专家共识[J]. 中华神经科杂志, 2019, 52(3): 166 – 176. doi: 10.3760/cma.j.issn.1006-7876.2019.03.002
    [52]
    Springate B, Fein D. Halstead-reitan neuropsychological test battery[M]//Volkmar FR. Encyclopedia of Autism Spectrum Disorders. Cham: Springer, 2021: 2301 – 2303.
    [53]
    Purisch AD. Misconceptions about the Luria-Nebraska neuropsy-chological battery[J]. NeuroRehabilitation, 2001, 16(4): 275 – 280. doi: 10.3233/NRE-2001-16412
    [54]
    Hodes RJ, Insel TR, Landis SC. The NIH toolbox: setting a standard for biomedical research[J]. Neurology, 2013, 80(11 Suppl 3): S1.
    [55]
    Barnett JH, Blackwell AD, Sahakian BJ, et al. The Paired Asso-ciates Learning (PAL) test: 30 years of CANTAB translational neuroscience from laboratory to bedside in dementia research[J]. Current Topics in Behavioral Neurosciences, 2016, 28: 449 – 474.
    [56]
    Chandler JM, Marsico M, Harper-Mozley L, et al. P3-111: cogni-tive assessment: discrimination of impairment and detection of decline in Alzheimer′s disease and mild cognitive impairment[J]. Alzheimer′s and Dementia, 2008, 4(4S): T551 – T552.
    [57]
    Mitchell J, Arnold R, Dawson K, et al. Outcome in subgroups of mild cognitive impairment (MCI) is highly predictable using a simple algorithm[J]. Journal of Neurology, 2009, 256(9): 1500 – 1509. doi: 10.1007/s00415-009-5152-0
    [58]
    Albers MW, Gilmore GC, Kaye J, et al. At the interface of sensory and motor dysfunctions and Alzheimer’s disease[J]. Alzheimer′s and Dementia, 2015, 11(1): 70 – 98. doi: 10.1016/j.jalz.2014.04.514
    [59]
    Tasaki S, Gaiteri C, Petyuk VA, et al. Genetic risk for Alzheimer′s dementia predicts motor deficits through multi-omic systems in older adults[J]. Translational Psychiatry, 2019, 9(1): 241. doi: 10.1038/s41398-019-0577-4
    [60]
    Lyons BE, Austin D, Seelye A, et al. Pervasive computing techn-ologies to continuously assess Alzheimer′s disease progression and intervention efficacy[J]. Frontiers in Aging Neuroscience, 2015, 7: 102.
    [61]
    Ellis RJ, Ng YS, Zhu SG, et al. A validated smartphone-based assessment of gait and gait variability in Parkinson′s disease[J]. PLoS One, 2015, 10(10): e0141694. doi: 10.1371/journal.pone.0141694
    [62]
    Buracchio T, Dodge HH, Howieson D, et al. The trajectory of gait speed preceding mild cognitive impairment[J]. Arch Neurology, 2010, 67(8): 980 – 986.
    [63]
    Case MA, Burwick HA, Volpp KG, et al. Accuracy of smartphone applications and wearable devices for tracking physical activity data[J]. JAMA, 2015, 313(6): 625 – 626. doi: 10.1001/jama.2014.17841
    [64]
    Dougherty RJ, Ramachandran J, Liu FY, et al. Association of walking energetics with amyloid beta status: findings from the Baltimore Longitudinal Study of Aging[J]. Alzheimer′s and Dementia, 2021, 13(1): e12228.
    [65]
    Stringer G, Couth S, Brown LJE, et al. Can you detect early dementia from an email? A proof of principle study of daily computer use to detect cognitive and functional decline[J]. International Journal of Geriatric Psychiatry, 2018, 33(7): 867 – 874. doi: 10.1002/gps.4863
    [66]
    Scinto LFM, Daffner KR, Dressler D, et al. A potential noninvasive neurobiological test for Alzheimer′s disease[J]. Science, 1994, 266(5187): 1051 – 1054. doi: 10.1126/science.7973660
    [67]
    Molitor RJ, Ko PC, Ally BA. Eye movements in Alzheimer′s disease[J]. Journal of Alzheimer′s Disease, 2015, 44(1): 1 – 12. doi: 10.3233/JAD-141173
    [68]
    Gills JL, Bott NT, Madero EN, et al. A short digital eye-tracking assessment predicts cognitive status among adults[J]. GeroScience, 2021, 43(1): 297 – 308. doi: 10.1007/s11357-020-00254-5
    [69]
    Nie J, Qiu Q, Phillips M, et al. Early diagnosis of mild cognitive impairment based on eye movement parameters in an aging Chinese population[J]. Frontiers in Aging Neuroscience, 2020, 12: 221. doi: 10.3389/fnagi.2020.00221
    [70]
    Chougule PS, Najjar RP, Finkelstein MT, et al. Light-induced pupillary responses in Alzheimer′s disease[J]. Frontiers in Neurology, 2019, 10: 360. doi: 10.3389/fneur.2019.00360
    [71]
    Peters JM, Hummel T, Kratzsch T, et al. Olfactory function in mild cognitive impairment and Alzheimer′s disease: an investigation using psychophysical and electrophysiological techniques[J]. American Journal of Psychiatry, 2003, 160(11): 1995 – 2002. doi: 10.1176/appi.ajp.160.11.1995
    [72]
    Schubert CR, Carmichael LL, Murphy C, et al. Olfaction and the 5-year incidence of cognitive impairment in an epidemiological study of older adults[J]. Journal of the American Geriatrics Society, 2008, 56(8): 1517 – 1521. doi: 10.1111/j.1532-5415.2008.01826.x
    [73]
    陈超, 肖世富. 嗅觉障碍与阿尔茨海默病[J]. 中国现代神经疾病杂志, 2010, 10(2): 191 – 196. doi: 10.3969/j.issn.1672-6731.2010.02.011
    [74]
    Hummel T, Kobal G, Gudziol H, et al. Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3 000 subjects[J]. European Archives of Oto-Rhino-Laryngology, 2007, 264(3): 237 – 243. doi: 10.1007/s00405-006-0173-0
    [75]
    Woodward MR, Amrutkar CV, Shah HC, et al. Validation of olfactory deficit as a biomarker of Alzheimer disease[J]. Neurology Clinical Practice, 2017, 7(1): 5 – 14. doi: 10.1212/CPJ.0000000000000293
    [76]
    Doty RL, Marcus A, Lee WW. Development of the 12-item cross-cultural smell identification test (CC-SIT)[J]. The Laryngoscope, 1996, 106(3): 353 – 356. doi: 10.1097/00005537-199603000-00021
    [77]
    Woodward MR, Hafeez MU, Qi QY, et al. Odorant item specific olfactory identification deficit may differentiate Alzheimer disease from aging[J]. The American Journal of Geriatric Psychiatry, 2018, 26(8): 835 – 846. doi: 10.1016/j.jagp.2018.02.008
    [78]
    Kim J, Yon DK, Choi KY, et al. Novel diagnostic tools for identify-ing cognitive impairment using olfactory-stimulated functional near-infrared spectroscopy: patient-level, single-group, diagnostic trial[J]. Alzheimer’s Research and Therapy, 2022, 14(1): 39. doi: 10.1186/s13195-022-00978-w
    [79]
    Bliwise DL. Sleep disorders in Alzheimer′s disease and other dementias[J]. Clinical Cornerstone, 2004, 6 Suppl 1A: S16 – S28.
    [80]
    Lim ASP, Kowgier M, Yu L, et al. Sleep fragmentation and the risk of incident Alzheimer′s disease and cognitive decline in older persons[J]. Sleep, 2013, 36(7): 1027 – 1032. doi: 10.5665/sleep.2802
    [81]
    Lujan MR, Perez-Pozuelo I, Grandner MA. Past, present, and future of multisensory wearable technology to monitor sleep and circadian rhythms[J]. Frontiers in Digital Health, 2021, 3: 721919. doi: 10.3389/fdgth.2021.721919
    [82]
    Roberts DM, Schade MM, Mathew GM, et al. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography[J]. Sleep, 2020, 43(7): zsaa045. doi: 10.1093/sleep/zsaa045
    [83]
    Ong AA, Gillespie MB. Overview of smartphone applications for sleep analysis[J]. World Journal of Otorhinolaryngology-Head and Neck Surgery, 2016, 2(1): 45 – 49. doi: 10.1016/j.wjorl.2016.02.001
    [84]
    Tuominen J, Peltola K, Saaresranta T, et al. Sleep parameter assessment accuracy of a consumer home sleep monitoring ballistocardiograph beddit sleep tracker: a validation study[J]. Journal of Clinical Sleep Medicine, 2019, 15(3): 483 – 487. doi: 10.5664/jcsm.7682
    [85]
    Debellemaniere E, Chambon S, Pinaud C, et al. Performance of an ambulatory dry-EEG device for auditory closed-loop stimulation of sleep slow oscillations in the home environment[J]. Frontiers in Human Neuroscience, 2018, 12: 88. doi: 10.3389/fnhum.2018.00088
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (764) PDF downloads(168) Cited by()
    Proportional views
    Publishing history
    • Receive:  2022-03-24
    • Online:  2023-01-10
    • Published:  2023-03-10

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return