Advance Search
Volume 38 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
QIU Yu-bing, JIA Man-hong, CHENG Jin-ou, . Epidemiological characteristics of two COVID-19 outbreaks caused by SARS-CoV-2 prototype and Omicron variant in border area of Yunnan province: a comparative analysis[J]. Chinese Journal of Public Health, 2022, 38(9): 1175-1180. doi: 10.11847/zgggws1139133
Citation: QIU Yu-bing, JIA Man-hong, CHENG Jin-ou, . Epidemiological characteristics of two COVID-19 outbreaks caused by SARS-CoV-2 prototype and Omicron variant in border area of Yunnan province: a comparative analysis[J]. Chinese Journal of Public Health, 2022, 38(9): 1175-1180. doi: 10.11847/zgggws1139133

Epidemiological characteristics of two COVID-19 outbreaks caused by SARS-CoV-2 prototype and Omicron variant in border area of Yunnan province: a comparative analysis

doi: 10.11847/zgggws1139133
  • Received Date: 2022-07-02
    Available Online: 2022-07-15
  • Publish Date: 2022-09-30
  •   Objective  To examine the difference in epidemiological characteristics of coronavirus disease 2019 (COVID-19) epidemics caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prototype strain and Omicron variant in a border area of Yunnan province for providing references to real-time adjustment of regional measures on COVID-19 epidemic prevention and control.   Methods   Field surveys were conducted to collected relevant information on confirmed cases, asymptomatic infections, close contacts and secondary close contacts from two COVID-19 outbreaks in Ruili – a border city of Yunnan province: an epidemic during March 29 – April 19, 2021 caused by SARS-CoV-2 prototype strain based on whole gene sequencing (abbreviated as prototype-caused epidemic) and an another during February 16 – March 26, 2022 caused by SARS-CoV-2 Omicron variant BA.2 (variant-caused epidemic). Descriptive statistics were performed to compare epidemiological characteristics between the two COVID-19 outbreaks.   Results  Both the two outbreaks were induced by imported cases from abroad. The majority of sufferers were confirmed cases (93/117, 79.49%) for the prototype-caused epidemic and were asymptomatic infections (314/384, 81.77%) for the variant-caused epidemic, with a significant difference in the proportion between the two epidemics (χ2 = 177.254, P < 0.001). In nucleic acid tests at the time of diagnosis, the cycle threshold (Ct) values of ORF1ab gene and N gene for the cases infected with SARS-CoV-2 prototype strain were significantly higher than those for the cases with SARS-CoV-2 Omicron variant infection (Z = 6.089, 6.924, P < 0.001). The proportions of cases aged < 15 years and > 60 years in the variant-caused epidemic were significantly higher than those in the prototype-caused epidemic (χ2 = 33.236, P < 0.001). The incubation period (median [M], 25th percentile [P25], 75th percentile [P75]) for the secondary infections among close contacts was not significantly different between the two epidemics (3 [1,4.75] vs. 3 [2, 5], Z = – 1.54, P = 0.124), with 88.75% and 95.24% of the secondary infections having the incubation period less than 7 days for the prototype- and variant-caused epidemic. The secondary infection rate of close contacts was 1.17% (80/6 833) and 2.78% (145/5 223) and the rate of core close contact was 6.3% (58/920) and 6.23% (111/1782) for the prototype- and variant-caused epidemic. No secondary infection was detected among general close contacts and secondary close contacts and the secondary infection rate was the highest among the contacts living together with confirmed cases, followed by that among those having dinner with the confirmed cases. Totally 11 and 48 clustering epidemics were identified in the two COVID-19 outbreaks caused by SARS-CoV-2 prototype strain and Omicron variant, involving 76.07% and 33.85% of all diagnosed cases during the two outbreaks.   Conclusion  Compared to SARS-CoV-2 prototype strain, SARS-CoV-2 Omicron variant BA.2 exhibits higher infectivity and could result in more asymptomatic infections. The study results should be considered in developing measures on COVID-19 epidemic prevention and control.
  • loading
  • [1]
    Qi SX, Zhao X, Hao P, et al. Two reemergent cases of COVID - 19 – Hebei province, China, January 2, 2021[J]. China CDC Weekly, 2021, 3(2): 25 – 27. doi: 10.46234/ccdcw2021.006
    [2]
    Zhou L. Yao LS, Hao P, et al. COVID - 19 cases spread through the K350 train – Jilin and Heilongjiang provinces, China, January 2021[J]. China CDC Weekly, 2021, 3(8): 162 – 164. doi: 10.46234/ccdcw2021.026
    [3]
    Yao LS, Luo MY, Jia TW, et al. COVID - 19 super spreading event amongst elderly individuals-Jilin province, China, January 2021[J]. China CDC Weekly, 2021, 3(10): 211 – 213. doi: 10.46234/ccdcw2021.050
    [4]
    贾蕾, 王小莉, 吴双胜, 等. 北京市顺义区新冠肺炎聚集性疫情的流行病学特征[J]. 国际病毒学杂志, 2021, 28(5): 379 – 383. doi: 10.3760/cma.j.issn.1673-4092.2021.05.006
    [5]
    瑞丽市人民政府. 瑞丽市简介[EB/OL].(2022 – 05 – 12).https://www.rl.gov.cn/Web/_M6_4QWS8V0X3BBCEBB5EB4943BCBD_1.htm.
    [6]
    国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 关于印发新型冠状病毒肺炎防控方案(第七版)的通知[EB/OL]. (2020 – 09 – 15). http://www.gov.cn//xinwen/2020-09/15/content_5543680.htm.
    [7]
    国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 关于印发新型冠状病毒肺炎防控方案(第八版)的通知[EB/OL]. (2021 – 05 – 14). http://www.nhc.gov.cn/jkj/s3577/202105/6f1e8ec6c4a540d99fafef52fc86d0f8.shtml.
    [8]
    上海第一医学院, 武汉医学院. 流行病学[M]. 北京: 人民卫生出版社, 1981: 16.
    [9]
    康良钰, 刘珏, 刘民. 新型冠状病毒肺炎家庭续发率的研究进展[J]. 中国预防医学杂志, 2021, 22(1): 76 – 80. doi: 10.16506/j.1009-6639.2021.01.015
    [10]
    国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 关于印发新型冠状病毒肺炎防控方案(第九版)的通知[EB/OL]. (2022 – 06 – 28). http://www.nhc.gov.cn/jkj/s3577/202206/de224e7784fe4007b7189c1f1c9d5e85.shtml.
    [11]
    马钰, 马蒙蒙, 罗业飞, 等. 广州市新型冠状病毒肺炎密切接触者感染危险因素分析[J]. 中国公共卫生, 2020, 36(4): 507 – 511. doi: 10.11847/zgggws1129419
    [12]
    高雅, 姜文婕, 姚利利, 等. 上海市宝山区新型冠状病毒肺炎病例密切接触者感染危险因素分析[J]. 实用预防医学, 2022, 29(4): 399 – 402. doi: 10.3969/j.issn.1006-3110.2022.04.004
    [13]
    宁少奇, 张义, 曹磊, 等. 陕西省新型冠状病毒肺炎病例的传播特点分析[J]. 中华预防医学杂志, 2020, 54(5): 493 – 497. doi: 10.3760/cma.j.cn112150-20200227-00201
    [14]
    李敏, 袁珩, 曹一鸥, 等. 四川省新型冠状病毒肺炎无症状感染者传染性分析[J]. 预防医学情报杂志, 2021, 37(2): 161 – 164.
    [15]
    田路路, 姚歆, 王梦媛, 等. 四川省664例新型冠状病毒肺炎病例的流行病学特征分析[J]. 现代预防医学, 2021, 48(10): 1765 – 1768, 1783.
    [16]
    邹旋, 宋丽霞, 何建凡, 等. 深圳市2063例新冠肺炎密切接触者集中医学观察结果分析[J]. 中国公共卫生管理, 2021, 37(4): 557 – 559.
    [17]
    胡永峰, 刘立平, 姚喜清, 等. 武汉市某区新型冠状病毒肺炎密切接触者感染与发病流行病学特征分析[J]. 现代预防医学, 2020, 47(21): 3993 – 3997.
    [18]
    潘静静, 王莹莹, 王文华, 等. 一起由奥密克戎变异株BA.2.2引起的河南省新冠肺炎本土疫情流行病学特征分析[J]. 中国公共卫生, 2022, 38(8): 975 – 979.
    [19]
    李伟, 李菁菁. 比例原则在密切接触者隔离规则中的适用 —— 以新冠疫情防控为例[J]. 西南石油大学学报(社会科学版), 2022, 24(1): 9 – 15.
    [20]
    廖聪慧, 王子晨, 邓强, 等. COVID - 19疫苗上市后安全性及有效性的研究进展[J]. 暨南大学学报(自然科学与医学版), 2021, 42(5): 547 – 556.
    [21]
    Cox RJ, Brokstad KA. Not just antibodies: B cells and T cells mediate immunity to COVID - 19[J]. Nature Reviews Immunology, 2020, 20(10): 581 – 582. doi: 10.1038/s41577-020-00436-4
    [22]
    Ai JW, Wang X, He XY, et al. Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages[J]. Cell Host and Microbe, 2022, doi: 10.1016/j.chom.2022.05.001.
    [23]
    Ai JW, Zhang HC, Zhang Y, et al. Omicron variant showed lower neutralizing sensitivity than other SARS - CoV - 2 variants to immune sera elicited by vaccines after boost[J]. Emerging Microbes and Infections, 2022, 11(1): 337 – 343. doi: 10.1080/22221751.2021.2022440
    [24]
    Ong SWX, Tan YK, Chia PY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS - CoV - 2) from a symptomatic patient[J]. JAMA, 2020, 323(16): 1610 – 1612. doi: 10.1001/jama.2020.3227
    [25]
    van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS - CoV - 2 as compared with SARS - CoV - 1[J]. The New England Journal of Medicine, 2020, 382(16): 1564 – 1567. doi: 10.1056/NEJMc2004973
    [26]
    张明洪, 何树森, 张艳, 等. 新型冠状病毒感染者居住环境用品核酸检测与分析[J]. 现代预防医学, 2020, 47(19): 3494 – 3496.
    [27]
    刘莉莉, 李涛, 刘柏林, 等. 新冠肺炎无症状感染者隔离点环境及用具监测结果分析[J]. 现代医药卫生, 2021, 37(18): 3163 – 3167. doi: 10.3969/j.issn.1009-5519.2021.18.027
    [28]
    吴梦萱. 云南德宏州新冠疫苗全程接种率96.92%[EB/OL]. 央视新闻. (2021 – 07 – 06).https://baijiahao.baidu.com/s?id=1704520607633753314.
    [29]
    解有成, 康殷楠, 高春, 等. 新冠病毒“奥密克戎亚型变异毒株BA. 2”的最新研究进展[J]. 海南医学院学报, 2022, 28(8): 561 – 565.
    [30]
    李亚飞, 范威, 王文华, 等. 一起由新冠病毒奥密克戎变异株引起的学校聚集性疫情[J]. 中国公共卫生, 2022, 38(5): 614 – 618. doi: 10.11847/zgggws1138512
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(4)

    Article views (538) PDF downloads(170) Cited by()
    Proportional views
    Publishing history
    • Receive:  2022-07-02
    • Online:  2022-07-15
    • Published:  2022-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return