Advance Search
Volume 38 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
WANG Run-si, LI Xi. Application of agent-based modeling method in prediction of non-communicable chronic diseases: a review[J]. Chinese Journal of Public Health, 2022, 38(7): 844-847. doi: 10.11847/zgggws1135054
Citation: WANG Run-si, LI Xi. Application of agent-based modeling method in prediction of non-communicable chronic diseases: a review[J]. Chinese Journal of Public Health, 2022, 38(7): 844-847. doi: 10.11847/zgggws1135054

Application of agent-based modeling method in prediction of non-communicable chronic diseases: a review

doi: 10.11847/zgggws1135054
  • Received Date: 2021-04-15
    Available Online: 2022-03-23
  • Publish Date: 2022-07-01
  • Non - communicable chronic diseases (NCDs), as a primary global health threat, have caused an increasingly heavy burden all over the world. Compared with traditional statistical model, the agent - based model no longer focuses on fitting general characteristics, but to simulate individual changes under the interaction between individuals and environmental influence on individuals by building individual - based models for simulating the characteristics of a population. By including time - dependent changes in characteristics of human and environment and their interactions, the agent - based model could be used to simulate dynamic changing process of changes in characteristics of human and environment with time. Therefore, the agent - based model can be adopted to simulate complex problems closer to the real situation. The study introduced the structure and characteristics of the agent - based model and reviewed the application and limitations of the model in prediction of NCDs prevalence to provide theoretical and empirical support for the application of the model in NCDs prevention and control.
  • loading
  • [1]
    World Health Organization. World health statistics 2019: monitor-ing health for the SDGs, sustainable development goals[EB/OL]. (2020 – 05 – 13) [2021 – 01 – 31].https://apps.who.int/iris/handle/10665/338072.
    [2]
    中华人民共和国国家统计局. 中国统计年鉴2019[M]. 北京: 中国统计出版社, 2019.
    [3]
    马爱娟, 刘爱萍, 王培玉, 等. 糖尿病风险评估不同方法应用比较[J]. 中国公共卫生, 2010, 26(5): 570 – 572. doi: 10.11847/zgggws2010-26-05-33
    [4]
    方欣, 杨泽, 钟文玲, 等. 福建省缺血性心血管病发病风险评估[J]. 中国公共卫生, 2020, 36(8): 1139 – 1142. doi: 10.11847/zgggws1126994
    [5]
    Nianogo RA, Arah OA. Agent - based modeling of noncommunicable diseases: a systematic review[J]. American Journal of Public Health, 2015, 105(3): e20 – e31. doi: 10.2105/AJPH.2014.302426
    [6]
    Jones AP, Homer JB, Murphy DL, et al. Understanding diabetes population dynamics through simulation modeling and experi-mentation[J]. American Journal of Public Health, 2006, 96(3): 488 – 494. doi: 10.2105/AJPH.2005.063529
    [7]
    谢丽, 赵培忻, 丁海欣. 新发突发传染病驱动的谣言传播建模与仿真 —— 双重网络下的研究[J]. 现代情报, 2020, 40(10): 22 – 33. doi: 10.3969/j.issn.1008-0821.2020.10.003
    [8]
    Luke DA, Stamatakis KA. Systems science methods in public health: dynamics, networks, and agents[J]. Annual Review of Public Health, 2012, 33: 357 – 376. doi: 10.1146/annurev-publhealth-031210-101222
    [9]
    Zhang X. Application of discrete event simulation in health care: a systematic review[J]. BMC Health Services Research, 2018, 18(1): 687. doi: 10.1186/s12913-018-3456-4
    [10]
    Hunter E, Namee BM, Kelleher J. An open - data - driven agent - based model to simulate infectious disease outbreaks[J]. PLoS One, 2018, 13(12): e0208775. doi: 10.1371/journal.pone.0208775
    [11]
    Lee BY, Brown ST, Korch GW, et al. A computer simulation of vaccine prioritization, allocation, and rationing during the 2009 H1N1 influenza pandemic[J]. Vaccine, 2010, 28(31): 4875 – 4879. doi: 10.1016/j.vaccine.2010.05.002
    [12]
    Macal CM, North MJ. Tutorial on agent-based modelling and simulation[J]. Journal of Simulation, 2010, 4(3): 151 – 162. doi: 10.1057/jos.2010.3
    [13]
    Edling C. Book reviews: Joshua M. Epstein and Robert Axtell: Growing artificial societies: social science from the Bottom Up. Washington, DC: Brookings Institution Press and Cambridge, MA: MIT Press, 1996 (available with or without CD)[J]. Acta Soci-ologica, 1998, 41(1): 75 – 77.
    [14]
    Auchincloss AH, Roux AVD. A new tool for epidemiology: the usefulness of dynamic - agent models in understanding place effects on health[J]. American Journal of Epidemiology, 2008, 168(1): 1 – 8. doi: 10.1093/aje/kwn118
    [15]
    Bonabeau E. Agent - based modeling: methods and techniques for simulating human systems[J]. Proceedings of the National Aca-demy of Sciences of the United States of America, 2002, 99(S3): 7280 – 7287.
    [16]
    Li Y, Kong N, Lawley MA, et al. Using systems science for population health management in primary care[J]. Journal of Primary Care and Community Health, 2014, 5(4): 242 – 246. doi: 10.1177/2150131914536400
    [17]
    Lassnig A, Rienmueller T, Kramer D, et al. A novel hybrid modeling approach for the evaluation of integrated care and economic outcome in heart failure treatment[J]. BMC Medical Informatics and Decision Making, 2019, 19(1): 229. doi: 10.1186/s12911-019-0944-3
    [18]
    Gao A, Osgood ND, Jiang Y, et al. Projecting prevalence, costs and evaluating simulated interventions for diabetic end stage renal disease in a Canadian population of aboriginal and non - aboriginal people: an agent based approach[J]. BMC Nephrology, 2017, 18(1): 283. doi: 10.1186/s12882-017-0699-y
    [19]
    Luo LN, Pang BW, Chen J, et al. Assessing the impact of lifestyle interventions on diabetes prevention in China: a modeling approach[J]. International Journal of Environmental Research and Public Health, 2019, 16(10): 1677. doi: 10.3390/ijerph16101677
    [20]
    Correa MF, Li Y, Kum HC, et al. Assessing the effect of clinical inertia on diabetes outcomes: a modeling approach[J]. Journal of General Internal Medicine, 2019, 34(3): 372 – 378. doi: 10.1007/s11606-018-4773-3
    [21]
    Xue H, Slivka L, Igusa T, et al. Applications of systems modelling in obesity research[J]. Obesity Reviews, 2018, 19(9): 1293 – 1308. doi: 10.1111/obr.12695
    [22]
    Kasman M, Hammond RA, Heuberger B, et al. Activating a community: an agent - based model of romp and chomp, a whole - of - community childhood obesity intervention[J]. Obesity, 2019, 27(9): 1494 – 1502.
    [23]
    Ferguson MC, O'Shea KJ, Hammer LD, et al. Can following formula - feeding recommendations still result in infants who are overweight or have obesity?[J]. Pediatric Research, 2020, 88(4): 661 – 667. doi: 10.1038/s41390-020-0844-3
    [24]
    Hennessy E, Ornstein JT, Economos CD, et al. Designing an agent - based model for childhood obesity interventions: a case study of child obesity180[J]. Preventing Chronic Disease, 2016, 13: E04.
    [25]
    Orr MG, Kaplan GA, Galea S. Neighbourhood food, physical activity, and educational environments and black/white disparities in obesity: a complex systems simulation analysis[J]. Journal of Epidemiology and Community Health, 2016, 70(9): 862 – 867. doi: 10.1136/jech-2015-205621
    [26]
    Lee BY, Ferguson MC, Hertenstein DL, et al. Simulating the impact of sugar - sweetened beverage warning labels in three cities[J]. American Journal of Preventive Medicine, 2018, 54(2): 197 – 204. doi: 10.1016/j.amepre.2017.11.003
    [27]
    Shi LY, Zhang L, Lu Y. Evaluating social network - based weight loss interventions in Chinese population: an agent - based simulation[J]. PLoS One, 2020, 15(8): e0236716. doi: 10.1371/journal.pone.0236716
    [28]
    Axelrod R. Advancing the art of simulation in the social sciences[M]//Conte R, Hegselmann R, Terna P. Simulating Social Pheno-mena. Berlin: Springer, 1997: 21 – 40.
    [29]
    Chen ZM, Lee LM, Chen JS, et al. Cohort profile: the Kadoorie Study of Chronic Disease in China (KSCDC)[J]. International Journal of Epidemiology, 2005, 34(6): 1243 – 1249. doi: 10.1093/ije/dyi174
    [30]
    Chen ZM, Chen JS, Collins R, et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long - term follow - up[J]. International Journal of Epidemiology, 2011, 40(6): 1652 – 1666. doi: 10.1093/ije/dyr120
    [31]
    Lu JP, Xuan S, Downing NS, et al. Protocol for the China PEACE (Patient - centered Evaluative Assessment of Cardiac Events) million persons project pilot[J]. BMJ Open, 2016, 6(1): e010200. doi: 10.1136/bmjopen-2015-010200
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (562) PDF downloads(56) Cited by()
    Proportional views
    Publishing history
    • Receive:  2021-04-15
    • Online:  2022-03-23
    • Published:  2022-07-01

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return