Advance Search
Volume 39 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
FENG Xiang, HUA Zhaolai, SHI Qiuping, LIU Yao, ZHOU Jinyi, TONG Haiyuan, ZHU Jinhua. Associations of different obesity phenotypes with chronic disease comorbidity among urban and rural residents of 40 – 69 years old in Yangzhong city: a cross-sectional survey[J]. Chinese Journal of Public Health, 2023, 39(11): 1412-1418. doi: 10.11847/zgggws1141803
Citation: FENG Xiang, HUA Zhaolai, SHI Qiuping, LIU Yao, ZHOU Jinyi, TONG Haiyuan, ZHU Jinhua. Associations of different obesity phenotypes with chronic disease comorbidity among urban and rural residents of 40 – 69 years old in Yangzhong city: a cross-sectional survey[J]. Chinese Journal of Public Health, 2023, 39(11): 1412-1418. doi: 10.11847/zgggws1141803

Associations of different obesity phenotypes with chronic disease comorbidity among urban and rural residents of 40 – 69 years old in Yangzhong city: a cross-sectional survey

doi: 10.11847/zgggws1141803
More Information
  • Corresponding author: ZHU Jinhua, E-mail: zhujinhuavip@sina.com
  • Received Date: 2023-03-20
  • Accepted Date: 2023-10-11
  • Rev Recd Date: 2023-06-12
  • Available Online: 2023-11-28
  • Publish Date: 2023-11-01
  •   Objective  To examine the associations of different obesity phenotypes with chronic disease comorbidities among middle-aged and elderly residents in Yangzhong city for precise prevention and control of chronic disease comorbidy in the population.   Methods  Face-to-face interview with a questionnaire developed by domestic researchers, physical examination and laboratory tests were conducted among 6 899 residents aged 40 – 69 years recruited with stratified multistage random cluster sample in urban and rural regions of Yangzhong city, Jiangsu province from November 2017 through June 2021. Multivariate ordered logistic regression model was applied to analyze the effect of different types of obesity on chronic disease comorbidity in the residents.   Results  Of 6 581 participants finally included in the analysis, 3 957 (60.1%) were identified as having chronic disease comorbidity; the proportions of body mass index (BMI in kg/m2) -based overweight (24.0 – 27.9) and obesity ( ≥ 28.0) were 40.7% and 12.1%; the proportions of central obesity based on waist circumference (WC, ≥ 90 cm for males and ≥ 85 cm for females), waist to hip ratio (WHR, ≥ 0.90 for males and ≥ 0.85 for females), and waist to height ratio (WHtR, ≥ 0.50) were 35.3%, 79.6%, and 63.7%; the proportions of mixed obesity indicated by BMI + WC, BMI + WHR, and BMI + WHtR were 10.5%, 11.4%, and 11.8%, respectively. After adjusting for gender, age, education, marital status, annual household income, residence region, smoking, alcohol consumption, vegetable intake, fruit intake, physical activity, daily sleep duration and family history of chronic diseases, the results of multivariate ordered logistic regression analysis showed that the participants with following different obesity phenotypes were at increased risk of chronic disease comorbidity: BMI-based overweight (odds ratio [OR] = 1.736, 95% confidence interval [95%CI]: 1.575 – 1.915), BMI-based obesity (OR = 2.325, 95%CI: 2.012 – 2.687), WC-based central obesity (OR = 1.773, 95%CI: 1.615 – 1.947), WHR-based central obesity (OR = 1.956, 95%CI: 1.739 – 2.200), WHtR-based central obesity (OR = 1.968, 95%CI: 1.788 – 2.166), BMI + WC-based mixed obesity (OR = 2.590, 95%CI: 2.221 – 3.021), BMI + WHR-based mixed obesity (OR = 3.488, 95%CI: 2.908 – 4.185), and BMI + WHtR-based mixed obesity (OR = 2.845, 95%CI: 2.438 – 3.321).   Conclusion  BMI-based obesity, WC-, WHR-, and WHtR-based central obesity, and mixed obesity are all risk factors for chronic disease comorbidity among urban and rural middle-aged and elderly residents in Yangzhong city and special attention should be paid to the residents with WC-based central obesity and mixed obesity in prevention and control of chronic disease comorbidity.
  • loading
  • [1]
    王丽敏, 陈志华, 张梅, 等. 中国老年人群慢性病患病状况和疾病负担研究[J]. 中华流行病学杂志, 2019, 40(3): 277 – 283. doi: 10.3760/cma.j.issn.0254-6450.2019.03.005
    [2]
    王家威, 樊琼玲, 张雪莲, 等. 新疆南山牧区老年农牧民慢性病共病的现状分析[J]. 现代预防医学, 2020, 47(17): 3088 – 3091.
    [3]
    侯宜坦, 江冬冬, 刘晓君, 等. 武汉市社区老年人慢性病共病现状及相关因素分析[J]. 中国公共卫生, 2020, 36(11): 1604 – 1607. doi: 10.11847/zgggws1122572
    [4]
    闫巍, 李瑞, 王杰萍, 等. 北京市某三级医院综合科老年共病住院患者临床特点分析[J]. 中国全科医学, 2018, 21(14): 1648 – 1656.
    [5]
    冯祥, 华召来, 周琴, 等. 某市中老年居民主要慢性病患病现况及共病模式分析[J]. 现代预防医学, 2019, 46(20): 3728 – 3731, 3753.
    [6]
    陈嫦萤, 杨松, 庄乾, 等. 代谢性肥胖与高血压发病的队列研究[J]. 中华疾病控制杂志, 2023, 27(1): 17 – 22. doi: 10.16462/j.cnki.zhjbkz.2023.01.004
    [7]
    Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases[J]. Circulation Research, 2020, 126(11): 1477 – 1500. doi: 10.1161/CIRCRESAHA.120.316101
    [8]
    Avgerinos KI, Spyrou N, Mantzoros CS, et al. Obesity and cancer risk: emerging biological mechanisms and perspectives[J]. Meta-bolism, 2019, 92: 121 – 135. doi: 10.1016/j.metabol.2018.11.001
    [9]
    Zhang J, Xu LZ, Li JJ, et al. Association between obesity-related anthropometric indices and multimorbidity among older adults in Shandong, China: a cross-sectional study[J]. BMJ Open, 2020, 10(5): e036664. doi: 10.1136/bmjopen-2019-036664
    [10]
    郑帅印, 李富业, 谢尔瓦妮古丽·阿卜力米提, 等. 克拉玛依市35~75岁体检人群高血压、糖尿病、血脂异常调查[J]. 预防医学, 2022, 34(3): 232 – 239.
    [11]
    郭丹, 金承刚, 徐月宾, 等. 65岁及以上老年人体质指数与共病的相关性研究[J]. 中国慢性病预防与控制, 2022, 30(2): 129 – 133. doi: 10.16386/j.cjpccd.issn.1004-6194.2022.02.011
    [12]
    Liu ZZ, Yang HQ, Chen SY, et al. The association between body mass index, waist circumference, waist-hip ratio and cognitive disorder in older adults[J]. Journal of Public Health, 2019, 41(2): 305 – 312. doi: 10.1093/pubmed/fdy121
    [13]
    Lu YQ, Liu SY, Qiao YN, et al. Waist-to-height ratio, waist circum-ference, body mass index, waist divided by height 0.5 and the risk of cardiometabolic multimorbidity: a national longitudinal cohort study[J]. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31(9): 2644 – 2651. doi: 10.1016/j.numecd.2021.05.026
    [14]
    Liu LL, Liu Y, Sun XZ, et al. Identification of an obesity index for predicting metabolic syndrome by gender: the rural Chinese cohort study[J]. BMC Endocrine Disorders, 2018, 18(1): 54. doi: 10.1186/s12902-018-0281-z
    [15]
    朱进华, 冯祥, 华召来, 等. 胃癌高发地区40~69岁人群幽门螺旋杆菌感染与胃部疾病关联分析[J]. 中华肿瘤防治杂志, 2023, 30(13): 765 – 772.
    [16]
    Hu LH, Huang X, You CJ, et al. Prevalence of overweight, obesity, abdominal obesity and obesity-related risk factors in southern China[J]. PLoS One, 2017, 12(9): e0183934. doi: 10.1371/journal.pone.0183934
    [17]
    中国营养学会. 中国居民膳食指南: 2016[M]. 北京: 人民卫生出版社, 2016.
    [18]
    中华人民共和国国家卫生和计划生育委员会. 成人体重判定: WS/T 428 — 2013[S]. 北京: 中国标准出版社, 2013.
    [19]
    中国肥胖问题工作组数据汇总分析协作组. 我国成人体重指数和腰围对相关疾病危险因素异常的预测价值: 适宜体重指数和腰围切点的研究[J]. 中华流行病学杂志, 2002, 23(1): 5 – 10. doi: 10.3760/j.issn:0254-6450.2002.01.003
    [20]
    赵连成, 李莹, 彭亚光, 等. 中国成人中心性肥胖腰围身高比值的适宜切点的研究[J]. 中国预防医学杂志, 2012, 13(7): 481 – 485. doi: 10.16506/j.1009-6639.2012.07.017
    [21]
    中国高血压防治指南修订委员会, 高血压联盟(中国), 中华医学会心血管病学分会中国医师协会高血压专业委员会, 等. 中国高血压防治指南(2018年修订版)[J]. 中国心血管杂志, 2019, 24(1): 24 – 56. doi: 10.3969/j.issn.1007-5410.2019.01.002
    [22]
    World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consulta-tion. Part 1, Diagnosis and classification of diabetes mellitus[R]. Geneva: World Health Organization, 1999.
    [23]
    中国成人血脂异常防治指南修订联合委员会. 中国成人血脂异常防治指南(2016年修订版)[J]. 中国循环杂志, 2016, 31(10): 937 – 950. doi: 10.3969/j.issn.1000-3614.2016.10.001
    [24]
    Bramhankar M, Pandey M, Rana GS, et al. An assessment of anthropometric indices and its association with NCDs among the older adults of India: evidence from LASI Wave-1[J]. BMC Public Health, 2021, 21(1): 1357. doi: 10.1186/s12889-021-11421-4
    [25]
    Alzeidan R, Fayed A, Rabiee F, et al. Diagnostic performance of waist-to-height ratio in identifying cardiovascular risk factors and metabolic syndrome among adult Saudis: a cross-sectional study[J]. Saudi Medical Journal, 2020, 41(3): 253 – 260. doi: 10.15537/smj.2020.3.24915
    [26]
    Tian T, Zhang JX, Zhu QR, et al. Predicting value of five anthropometric measures in metabolic syndrome among Jiangsu Province, China[J]. BMC Public Health, 2020, 20(1): 1317. doi: 10.1186/s12889-020-09423-9
    [27]
    Ma L, Cai L, Deng L, et al. Waist circumference is better than other anthropometric indices for predicting cardiovascular disease risk factors in Chinese children – a cross-sectional study in Guangzhou[J]. Journal of Atherosclerosis and Thrombosis, 2016, 23(3): 320 – 329. doi: 10.5551/jat.31302
    [28]
    Domínguez-Reyes T, Quiroz-Vargas I, Salgado-Bernabé AB, et al. Anthropometric measurements as predictive indicators of metabolic risk in a Mexican population[J]. Nutrición Hospitalaria, 2017, 34(1): 96 – 101. doi: 10.20960/nh.983
    [29]
    张思婷, 张继国, 贾小芳, 等. 2018年中国15省份18~65岁居民肥胖与2型糖尿病患病的关联研究[J]. 中华流行病学杂志, 2022, 43(10): 1596 – 1602. doi: 10.3760/cma.j.cn112338-20211115-00884
    [30]
    笃梦雪, 吴楠, 郎俊杰, 等. 某校大学生不同肥胖类型与心血管疾病代谢指标的关系[J]. 中华疾病控制杂志, 2021, 25(11): 1293 – 1296. doi: 10.16462/j.cnki.zhjbkz.2021.11.010
    [31]
    薛建华, 刘梅, 尤爱军, 等. 上海18739名职业人员不同类型肥胖特征及其与慢性病指标的关系[J]. 职业卫生与应急救援, 2022, 40(4): 401 – 406, 423. doi: 10.16369/j.oher.issn.1007-1326.2022.04.003
    [32]
    周伟, 丁聪聪, 祝玲娟, 等. 江西省居民不同肥胖指标对脑卒中风险的预测效果[J]. 中华疾病控制杂志, 2020, 24(9): 1021 – 1026. doi: 10.16462/j.cnki.zhjbkz.2020.09.006
    [33]
    Cong XF, Liu SB, Wang WJ, et al. Combined consideration of body mass index and waist circumference identifies obesity patterns associated with risk of stroke in a Chinese prospective cohort study[J]. BMC Public Health, 2022, 22(1): 347. doi: 10.1186/s12889-022-12756-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article views (120) PDF downloads(14) Cited by()
    Proportional views
    Publishing history
    • Receive:  2023-03-20
    • Online:  2023-11-28
    • Published:  2023-11-01

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return