Advance Search
Volume 39 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
XU Xiaomeng, CUI Shiheng, WANG Yafei, SUN Li, CONG Yanli, WANG Jinghui, LI Jing, ZHANG Zhenguo. Predicting trend of measles epidemic in Hebei province: an empirical study with long short-term memory neural network model[J]. Chinese Journal of Public Health, 2023, 39(11): 1464-1468. doi: 10.11847/zgggws1141808
Citation: XU Xiaomeng, CUI Shiheng, WANG Yafei, SUN Li, CONG Yanli, WANG Jinghui, LI Jing, ZHANG Zhenguo. Predicting trend of measles epidemic in Hebei province: an empirical study with long short-term memory neural network model[J]. Chinese Journal of Public Health, 2023, 39(11): 1464-1468. doi: 10.11847/zgggws1141808

Predicting trend of measles epidemic in Hebei province: an empirical study with long short-term memory neural network model

doi: 10.11847/zgggws1141808
More Information
  • Corresponding author: SUN Li, E-mail:1126sl@163.com
  • Received Date: 2023-03-21
  • Accepted Date: 2023-09-04
  • Rev Recd Date: 2023-06-16
  • Available Online: 2023-11-28
  • Publish Date: 2023-11-01
  •   Objective  To explore the feasibility of predicting the trend of measles epidemic using long short-term memory (LSTM) neural network model for conducting prevention and control of measles.   Methods  The data on 51 012 measles cases reported in Hebei province form 2004 through 2020 were collected from China Information System for Disease Control and Prevention. The LSTM neural network model was constructed and the optimal model was selected to predict the trend of measles epidemic in the province. Rooted mean squared error (RMSE) and mean absolute error (MAE) were used to evaluate the prediction of model established.   Results  The annual number of measles cases reported in the province during the 17-year period were 950, 4 837, 7 953, 4 973, 2 273, 3 359, 14 457, 79, 38, 353, 5 365, 3 825, 1 825, 287, 241, 130, and 67, respectively, with a persistent decline since 2015. In addition, an obvious seasonality was observed in the incidence of measles. Using the collected data of 2017, the window length of 3 was determined for the constructed LSTM neural network model, with the RMSE of 17.288 and the MAE of 12.334, and the model was adopted to predict monthly number of measles cases from 2017 through 2020. The predicted monthly numbers of measles incidence were basically consistent with the number observed and the values of RMSE and MAE for years of 2017, 2019 and 2020 were all below 10, but the values for 2018 were slightly higher.   Conclusion  The constructed LSTM neural network model in this study showed a good efficiency in predicting monthly measles incidence in Hebei province and the model could be used in the analysis on measles incidence trend and epidemic risk assessment.
  • loading
  • [1]
    李兰娟, 任红, 高志良, 等. 传染病学[M]. 9版. 北京: 人民卫生出版社, 2018: 81.
    [2]
    刘倩倩, 唐林, 温宁, 等. 中国2020年麻疹流行病学特征[J]. 中国疫苗和免疫, 2022, 28(2): 135 – 139. doi: 10.19914/j.CJVI.2022026
    [3]
    赵子平, 许可, 吴莹, 等. 基于深度学习的猩红热流行趋势预测模型研究[J]. 南京医科大学学报: 自然科学版, 2022, 42(2): 252 – 257, 263.
    [4]
    赵永翼, 王菲, 申莹. 基于长短期记忆网络的COVID - 19疫情趋势序列分析预测[J]. 沈阳师范大学学报: 自然科学版, 2020, 38(6): 525 – 531.
    [5]
    陈春艳, 陈亿雄, 赵执扬, 等. SARIMA模型和LSTM神经网络在预测深圳市宝安区手足口病疫情中的应用[J]. 山西医科大学学报, 2022, 53(10): 1302 – 1307.
    [6]
    杨寒雨, 赵晓永, 王磊. 数据归一化方法综述[J]. 计算机工程与应用, 2023, 59(3): 13 – 22.
    [7]
    马停停, 冀天娇, 杨冠羽, 等. 基于长短时记忆神经网络的手足口病发病趋势预测[J]. 计算机应用, 2021, 41(1): 265 – 269.
    [8]
    杨文静, 杜然然, 吕章艳, 等. 人工智能在疾病预测研究中可视化分析[J]. 中国公共卫生, 2021, 37(5): 871 – 874. doi: 10.11847/zgggws1128486
    [9]
    陈亿雄, 李苑, 刘小明, 等. 长短记忆神经网络在流行性感冒暴发预测中的应用[J]. 江苏预防医学, 2019, 30(6): 622 – 625. doi: 10.13668/j.issn.1006-9070.2019.06.009
    [10]
    刘振球, 严琼, 左佳鹭, 等. EMD - BP神经网络在传染病发病趋势和预测研究中的应用[J]. 中国卫生统计, 2018, 35(1): 152 – 155.
    [11]
    程宁, 丁长松, 高婉卿, 等. 基于时间窗长短期记忆模型分析新型冠状病毒肺炎疫情[J]. 中华疾病控制杂志, 2021, 25(5): 577 – 582. doi: 10.16462/j.cnki.zhjbkz.2021.05.015
    [12]
    韩天齐, 宋波. 基于LSTM神经网络的麻疹发病率预测[J]. 电脑与电信, 2018(5): 54 – 57.
    [13]
    倪茹玉, 胡婉, 张恒川, 等. ARIMA乘积季节模型与LSTM神经网络模型对我国麻疹发病数预测效果的比较[J]. 现代预防医学, 2023, 50(1): 177 – 182.
    [14]
    李顺勇, 张钰嘉. LSTM和Prophet模型在肺结核发病数预测中的应用[J]. 河南科学, 2020, 38(2): 173 – 178. doi: 10.3969/j.issn.1004-3918.2020.02.001
    [15]
    丛艳丽, 张富斌, 张振国, 等. 2009 — 2012年河北省麻疹流行特征及消除麻疹策略[J]. 职业与健康, 2014, 30(23): 3408 – 3411.
    [16]
    刘曙光, 王立芹, 刘岩, 等. 河北省麻疹疫情时间序列的预测和预警分析[J]. 中国卫生检验杂志, 2015, 25(17): 2954 – 2956.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article views (139) PDF downloads(27) Cited by()
    Proportional views
    Publishing history
    • Receive:  2023-03-21
    • Online:  2023-11-28
    • Published:  2023-11-01

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return