Advance Search
Volume 39 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
WANG Ting, GUAN Tingying, ZHENG Chao, SHEN Liyan, YIN Jia, SUN Qiang. Establishment, evaluation and application of GM(1,1) models for predict-ing prevalence of common carbapenem-resistant bacteria in China[J]. Chinese Journal of Public Health, 2023, 39(11): 1458-1463. doi: 10.11847/zgggws1141915
Citation: WANG Ting, GUAN Tingying, ZHENG Chao, SHEN Liyan, YIN Jia, SUN Qiang. Establishment, evaluation and application of GM(1,1) models for predict-ing prevalence of common carbapenem-resistant bacteria in China[J]. Chinese Journal of Public Health, 2023, 39(11): 1458-1463. doi: 10.11847/zgggws1141915

Establishment, evaluation and application of GM(1,1) models for predict-ing prevalence of common carbapenem-resistant bacteria in China

doi: 10.11847/zgggws1141915
More Information
  • Corresponding author: SUN Qiang, E-mail:qiangs@sdu.edu.cn
  • Received Date: 2023-03-31
  • Accepted Date: 2023-09-06
  • Rev Recd Date: 2023-06-25
  • Available Online: 2023-11-28
  • Publish Date: 2023-11-01
  •   Objective  To establish, evaluate and preliminarily apply grey model (1,1) [GM(1,1)] models for predicting the prevalence of common carbapenem-resistant bacteria in China.   Methods  We extracted the national data of 2015 – 2021 on detection rate of carbapenem-resistant Escherichia coli (CR-E.coli), carbapenem-resistant Klebsiella pneumoniae (CRKP), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) from the China Bacterial Drug Resistance Surveillance Network. Four GM(1,1) models were constructed using the data of 2015 – 2019. Posterior difference ratio C, small error probability P, and relative error and residual error were used to assess the accuracy of the established models in predicting prevalence of common carbapenem-resistant bacteria with the data of 2020 – 2021. The prevalence of CR-E.coli, CRKP, CRPA and CRAB for years from 2022 to 2025 in China were predicted using the four GM(1,1) models established.   Results  For the four established GM(1,1) models, the values of posterior difference ratio C were less than 0.50, the small probability error P were close to 1.0, and the relative errors and residual errors were less than 10%, indicating good efficacies in predicting the prevalence of CR-E.coli, CRKP, CRPA and CRAB. Based on the four established GM(1,1) models, the predicted yearly prevalence of CR-E.coli, CRKP, CRPA, and CRAB in China are 1.668%, 12.208%, 16.663%, and 52.507% for 2022; 1.698%, 12.886%, 15.930%, and 1.549% for 2023; 1.729%, 13.601%, 15.229%, and 50.608% for 2024; and 1.761%, 14.355%, 14.559%, and 49.685% for 2025, respectively, with a upward trend for the prevalence of CR-E.coli and CRKP but a downward trend for the prevalence of CRPA and CRAB.   Conclusion  In this study, four GM(1,1) models were established for predicting the prevalence of common carbapenem-resistant bacteria and the predictions based on the models could be used in developing strategies on the prevention and control the prevalence of CR-E.coli, CRKP, CRPA and CRAB in China.
  • loading
  • [1]
    Leekitcharoenphon P, Johansson MHK, Munk P, et al. Genomic evolution of antimicrobial resistance in Escherichia coli[J]. Scien-tific Reports, 2021, 11(1): 15108. doi: 10.1038/s41598-021-93970-7
    [2]
    Browne AJ, Chipeta MG, Haines-Woodhouse G, et al. Global antibiotic consumption and usage in humans, 2000 – 18: a spatial modelling study[J]. The Lancet Planetary Health, 2021, 5(12): e893 – e904. doi: 10.1016/S2542-5196(21)00280-1
    [3]
    Zhen XM, Stålsby Lundborg C, Sun XS, et al. Economic burden of antibiotic resistance in China: a national level estimate for inpatients[J]. Antimicrobial Resistance and Infection Control, 2021, 10(1): 5. doi: 10.1186/s13756-020-00872-w
    [4]
    Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-resistant Klebsiella pneumoniae: virulence factors, molecular epidemiology and latest updates in treatment options[J]. Antibiotics, 2023, 12(2): 234. doi: 10.3390/antibiotics12020234
    [5]
    张宇, 卢笑晖. 耐碳青霉烯类革兰阴性杆菌的耐药机制和应对策略研究进展[J]. 暨南大学学报: 自然科学与医学版, 2022, 43(2): 138 – 148.
    [6]
    吴博, 严非, 付朝伟. 中美细菌耐药监测及治理演变比较[J]. 中国卫生资源, 2021, 24(5): 615 – 618. doi: 10.3969/j.issn.1007-953X.2021.05.029
    [7]
    Li XX, Zhang ZY, Xu D, et al. A prediction method for animal-derived drug resistance trend using a grey-BP neural network combination model[J]. Antibiotics, 2021, 10(6): 692. doi: 10.3390/antibiotics10060692
    [8]
    邹胜男, 袁丽, 吕小艳, 等. 基于细菌耐药监测系统的多重耐药菌分析与对策[J]. 齐齐哈尔医学院学报, 2019, 40(13): 1656 – 1658. doi: 10.3969/j.issn.1002-1256.2019.13.032
    [9]
    全国细菌耐药监测学术委员会. 全国细菌耐药监测网技术方案(2020年版)[J]. 中国感染与化疗杂志, 2020, 20(5): 560 – 564.
    [10]
    梁冰华, 黄李凤. 基于GM(1,1)灰色预测模型的中国医疗卫生资源预测分析[J]. 现代预防医学, 2021, 48(20): 3655 – 3659.
    [11]
    蔡红霞, 刘潇霞, 张文彬. 2011 — 2016年中国恶性肿瘤发病和死亡趋势分析及GM(1,1)模型预测[J]. 现代肿瘤医学, 2023, 31(5): 931 – 936. doi: 10.3969/j.issn.1672-4992.2023.05.028
    [12]
    李立, 杨召, 叶中辉, 等. 灰色GM(1,1)模型在结核病发病率预测中应用[J]. 中国公共卫生, 2014, 30(4): 396 – 397. doi: 10.11847/zgggws2014-30-04-04
    [13]
    姜文娟, 滕文杰, 崔帅帅, 等. GM(1,1)模型在中国围产儿死亡率预测中应用[J]. 中国公共卫生, 2015, 31(11): 1478 – 1480. doi: 10.11847/zgggws2015-31-11-34
    [14]
    张志军, 鹿麟, 牛法霞, 等. 耐碳青霉烯类肺炎克雷伯菌的耐药机制与分子流行病学特征[J]. 中国感染控制杂志, 2018, 17(9): 759 – 763. doi: 10.3969/j.issn.1671-9638.2018.09.002
    [15]
    尹丹萍, 周国清. 耐碳青霉烯类肠杆菌科细菌临床分布特点及耐药性研究[J]. 中华医院感染学杂志, 2018, 28(18): 2752 – 2755.
    [16]
    王群, 王亦晨, 张祎博, 等. 2016 — 2020年某三级综合医院耐碳青霉烯类肺炎克雷伯菌检出趋势[J]. 中华医院感染学杂志, 2022, 32(6): 835 – 839.
    [17]
    龙华婧, 邱芳华, 刘道利, 等. 中国2017 — 2019年耐碳青霉烯类肺炎克雷伯菌耐药基因及流行克隆特征[J]. 中国感染控制杂志, 2021, 20(11): 1008 – 1015. doi: 10.12138/j.issn.1671-9638.20217980
    [18]
    赵梅, 伏慧, 贾伟, 等. 中国西部地区血流感染病原菌分布及耐药性[J]. 中国抗生素杂志, 2018, 43(9): 1095 – 1100. doi: 10.3969/j.issn.1001-8689.2018.09.006
    [19]
    刘洁, 杨晶, 高立芳, 等. 耐碳青霉烯类肺炎克雷伯菌的耐药性及危险因素分析[J]. 中华医院感染学杂志, 2020, 30(8): 1223 – 1227.
    [20]
    李占结, 曹洋, 张永祥, 等. 碳青霉烯类药物信息化专档管理及干预效果[J]. 中华医院感染学杂志, 2019, 29(20): 3159 – 3165.
    [21]
    Zhen XM, Stålsby Lundborg C, Sun XS, et al. Clinical and economic burden of carbapenem-resistant infection or colonization caused by Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii: a multicenter study in China[J]. Antibiotics, 2020, 9(8): 514. doi: 10.3390/antibiotics9080514
    [22]
    程龙慧, 任琼琼, 肖培, 等. 我国常见细菌耐药趋势预测研究: 基于灰色GM(1,1)模型[J]. 中国感染控制杂志, 2022, 21(12): 1164 – 1170.
    [23]
    赖静, 张琪, 梁园, 等. 双碳青霉烯类抗生素治疗碳青霉烯类耐药菌感染的荟萃分析[J]. 中国感染与化疗杂志, 2019, 19(3): 300 – 305.
    [24]
    陈泳伍, 张圣雨, 鲁怀伟, 等. 碳青霉烯类抗菌药物专档管理对碳青霉烯类抗菌药物使用强度影响及CRO检出率相关分析[J]. 中国医院药学杂志, 2019, 39(16): 1678 – 1681. doi: 10.13286/j.cnki.chinhosppharmacyj.2019.16.16
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article views (111) PDF downloads(17) Cited by()
    Proportional views
    Publishing history
    • Receive:  2023-03-31
    • Online:  2023-11-28
    • Published:  2023-11-01

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return