高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺血性脑卒中肠道微生物移植致菌群失调大鼠模型建立

聂慧芳 彭株丽 游建凯 杨彤 吴海辉 赖嘉豪 葛金文 梅志刚

聂慧芳, 彭株丽, 游建凯, 杨彤, 吴海辉, 赖嘉豪, 葛金文, 梅志刚. 缺血性脑卒中肠道微生物移植致菌群失调大鼠模型建立[J]. 中国公共卫生, 2022, 38(3): 314-319. doi: 10.11847/zgggws1133778
引用本文: 聂慧芳, 彭株丽, 游建凯, 杨彤, 吴海辉, 赖嘉豪, 葛金文, 梅志刚. 缺血性脑卒中肠道微生物移植致菌群失调大鼠模型建立[J]. 中国公共卫生, 2022, 38(3): 314-319. doi: 10.11847/zgggws1133778
NIE Hui-fang, PENG Zhu-li, YOU Jian-kai, . Establishment of a microbial transplantation-induced dysbacteriosis model in rats with ischemic stroke[J]. Chinese Journal of Public Health, 2022, 38(3): 314-319. doi: 10.11847/zgggws1133778
Citation: NIE Hui-fang, PENG Zhu-li, YOU Jian-kai, . Establishment of a microbial transplantation-induced dysbacteriosis model in rats with ischemic stroke[J]. Chinese Journal of Public Health, 2022, 38(3): 314-319. doi: 10.11847/zgggws1133778

缺血性脑卒中肠道微生物移植致菌群失调大鼠模型建立

doi: 10.11847/zgggws1133778
基金项目: 湖南省教育厅科学研究项目(18C0370);湖南省研究生科研创新项目(CX20190540);湖南省大学生创新创业训练计划项目(S202010541021)
详细信息
    作者简介:

    聂慧芳(1984 – ),女,湖南宁远人,讲师,博士在读,研究方向:中医药防治脑血管病

    通讯作者:

    葛金文,E-mail:001267@hnucm.edu.cn

    梅志刚,E-mail:meizhigang@hnucm.edu.cn

  • 中图分类号: R 743.3;R-332

Establishment of a microbial transplantation-induced dysbacteriosis model in rats with ischemic stroke

  • 摘要:   目的   建立一种肠道菌群失调大鼠模型,为脑缺血损伤肠道菌群失调研究提供方法学支持。  方法   将SPF级SD大鼠分为正常组、供体组和受体组,对供体组大鼠予以大脑中动脉栓塞术(MCAO),术后72 h取盲肠菌群作为移植物;对受体组大鼠灌胃硫酸链霉素消耗肠道微生物后,将供体组的盲肠菌群灌胃移植给受体组,1次/d,共3 d。取3组大鼠盲肠内容物进行革兰染色镜检;取正常组、受体组大鼠回肠、盲肠、横结肠内容物及供体组大鼠盲肠内容物进行16S rDNA高通量测序,检测其微生物结构及特性,并进行生物信息学分析。  结果   正常组大鼠盲肠、横结肠菌群的物种多样性相对回肠显著增加(P < 0.01),3个肠段中的菌群均主要由厚壁菌门组成。与正常组比较,供体组大鼠盲肠菌群的物种多样性显著减少,门水平上物种组成分析显示,厚壁菌门显著减少、变形菌门显著增加(P < 0.01)。与正常组比较,受体组大鼠盲肠及横结肠菌群的物种多样性显著减少(P < 0.01);受体组大鼠盲肠菌群与横结肠菌群结构相近,主要由拟杆菌门组成;受体组大鼠回肠、盲肠、横结肠菌群与供体组大鼠盲肠菌群在α多样性ACE指数、β多样性均无统计学差异(P > 0.05),两组大鼠的菌群结构相近。  结论   MCAO 72 h大鼠盲肠菌群灌胃移植可建立一种与脑缺血微生物结构及特性类似的肠道菌群失调大鼠模型。
  • 图  1  3组大鼠盲肠菌群革兰染色

    图  2  正常大鼠不同肠段门水平上的物种组成分析

    图  3  受体组与正常组的chao1指数分析及β多样性PCoA分析

    图  4  受体组与正常组大鼠肠道微生物物种组成Circos图

    图  5  受体组与正常组微生物群落功能预测热图

  • [1] 《中国脑卒中防治报告》编写组. 《中国脑卒中防治报告2019》概要[J]. 中国脑血管病杂志, 2020, 17(5): 272 – 281.
    [2] The GBD 2016 Lifetime Risk of Stroke Collaborators. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016[J]. New England Journal of Medicine, 2018, 379(25): 2429 – 2437. doi: 10.1056/NEJMoa1804492
    [3] Wu SM, Wu B, Liu M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. The Lancet Neurology, 2019, 18(4): 394 – 405. doi: 10.1016/S1474-4422(18)30500-3
    [4] Battaglini D, Pimentel-Coelho PM, Robba C, et al. Gut microbiota in acute ischemic stroke: from pathophysiology to therapeutic implications[J]. Frontiers in Neurology, 2020, 11: 598. doi: 10.3389/fneur.2020.00598
    [5] Spychala MS, Venna VR, Jandzinski M, et al. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome[J]. Annals of neurology, 2018, 84(1): 23 – 36. doi: 10.1002/ana.25250
    [6] Nicholson SE, Watts LT, Burmeister DM, et al. Moderate traumatic brain injury alters the gastrointestinal microbiome in a time-dependent manner[J]. Shock, 2019, 52(2): 240 – 248. doi: 10.1097/SHK.0000000000001211
    [7] Durgan DJ, Lee J, McCullough LD, et al. Examining the role of the microbiota-gut-brain axis in stroke[J]. Stroke, 2019, 50(8): 2270 – 2277. doi: 10.1161/STROKEAHA.119.025140
    [8] Singh V, Sadler R, Heindl S, et al. The gut microbiome primes a cerebroprotective immune response after stroke[J]. Journal of Cerebral Blood Flow and Metabolism, 2018, 38(8): 1293 – 1298. doi: 10.1177/0271678X18780130
    [9] Wang WY, Li X, Yao XH, et al. The characteristics analysis of intestinal microecology on cerebral infarction patients and its correlation with apolipoprotein E[J]. Medicine, 2018, 97(41): e12805. doi: 10.1097/MD.0000000000012805
    [10] Li N, Wang XC, Sun CC, et al. Change of intestinal microbiota in cerebral ischemic stroke patients[J]. BMC Microbiology, 2019, 19(1): 191. doi: 10.1186/s12866-019-1552-1
    [11] Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension[J]. Hypertension, 2015, 65(6): 1331 – 1340. doi: 10.1161/HYPERTENSIONAHA.115.05315
    [12] Li J, Zhao FQ, Wang YD, et al. Gut microbiota dysbiosis contributes to the development of hypertension[J]. Microbiome, 2017, 5(1): 14. doi: 10.1186/s40168-016-0222-x
    [13] Zhu WF, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165(1): 111 – 124. doi: 10.1016/j.cell.2016.02.011
    [14] Lukiw WJ, Cong L, Jaber V, et al. Microbiome-derived lipopolysaccharide (LPS) selectively inhibits neurofilament light chain (NF-L) gene expression in human neuronal-glial (HNG) cells in primary culture[J]. Frontiers in Neuroscience, 2018, 12: 896. doi: 10.3389/fnins.2018.00896
    [15] Liu QK, Johnson EM, Lam RK, et al. Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity[J]. Nature Immunology, 2019, 20(8): 1023 – 1034. doi: 10.1038/s41590-019-0421-2
    [16] Stanley D, Moore RJ, Wong CHY. An insight into intestinal mucosal microbiota disruption after stroke[J]. Scientific Reports, 2018, 8(1): 568. doi: 10.1038/s41598-017-18904-8
    [17] 于淼, 曾宪章. 肠道菌群对脑卒中后免疫功能影响的研究进展[J]. 中风与神经疾病杂志, 2020, 37(10): 943 – 945.
    [18] 张培培. 肠道菌群失调可增加脑卒中风险[D]. 石家庄: 河北医科大学硕士学位论文, 2018: 1 – 28.
    [19] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84 – 91. doi: 10.1161/01.STR.20.1.84
    [20] Moyes RB, Reynolds J, Breakwell DP. Differential staining of bacteria: gram stain[J]. Current Protocols in Microbiology, 2009, 15(1): A.3C.1 – A.3C.8.
    [21] Wang JW, Kuo CH, Kuo FC, et al. Fecal microbiota transplantation: review and update[J]. Journal of the Formosan Medical Association, 2019, 118(S1): S23 – S31.
    [22] Singh V, Roth S, Llovera G, et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke[J]. Journal of Neuroscience, 2016, 36(28): 7428 – 7440. doi: 10.1523/JNEUROSCI.1114-16.2016
    [23] Chen RZ, Xu Y, Wu P, et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota[J]. Pharmacological Research, 2019, 148: 104403. doi: 10.1016/j.phrs.2019.104403
    [24] Lepage P, Leclerc MC, Joossens M, et al. A metagenomic insight into our gut's microbiome[J]. Recent Advances in Basic Science, 2013, 62(1): 146 – 158.
    [25] 马晓聪, 熊兴江, 莫毅, 等. 基于16S rDNA测序技术的自发性高血压大鼠肠道菌群结构变化及中药干预作用[J]. 中华中医药学刊, 2020, 38(8): 71 – 266.
    [26] 胡锦华, 吴力克, 张娟, 等. 实验性慢性肝损伤大鼠不同肠段正常菌群定量分析[J]. 山东医药, 2018, 48(13): 29 – 30.
    [27] Benakis C, Poon C, Lane D, et al. Distinct commensal bacterial signature in the gut is associated with acute and long-term protec-tion from ischemic stroke[J]. Stroke, 2020, 51(6): 1844 – 1854. doi: 10.1161/STROKEAHA.120.029262
    [28] Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, et al. Intestinal microbiota influences non-intestinal related autoimmune diseases[J]. Frontiers in Microbiology, 2018, 9: 432. doi: 10.3389/fmicb.2018.00432
    [29] Yang XW, Li YH, Zhang H, et al. Safflower Yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells[J]. International Journal of Immunopathology and Pharmacology, 2016, 29(1): 54 – 64. doi: 10.1177/0394632015617065
    [30] Neher JJ, Cunningham C. Priming microglia for innate immune memory in the brain[J]. Trends in Immunology, 2019, 40(4): 358 – 374. doi: 10.1016/j.it.2019.02.001
    [31] Kurita N, Yamashiro K, Kuroki T, et al. Metabolic endotoxemia promotes neuroinflammation after focal cerebral ischemia[J]. Journal of Cerebral Blood Flow and Metabolism, 2020, 40(12): 2505 – 2520. doi: 10.1177/0271678X19899577
  • 加载中
图(5)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  27
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-03
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-03-10

目录

    /

    返回文章
    返回