高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温热浪对北京市居民死亡影响附加效应

牛彦麟 杨军 林华亮 薛涛 高源 李文 王君 刘起勇

牛彦麟, 杨军, 林华亮, 薛涛, 高源, 李文, 王君, 刘起勇. 高温热浪对北京市居民死亡影响附加效应[J]. 中国公共卫生, 2022, 38(3): 344-350. doi: 10.11847/zgggws1134217
引用本文: 牛彦麟, 杨军, 林华亮, 薛涛, 高源, 李文, 王君, 刘起勇. 高温热浪对北京市居民死亡影响附加效应[J]. 中国公共卫生, 2022, 38(3): 344-350. doi: 10.11847/zgggws1134217
NIU Yan-lin, YANG Jun, LIN Hua-liang, . Added effect of heat waves on mortality in residents of Beijing, 2007 – 2013[J]. Chinese Journal of Public Health, 2022, 38(3): 344-350. doi: 10.11847/zgggws1134217
Citation: NIU Yan-lin, YANG Jun, LIN Hua-liang, . Added effect of heat waves on mortality in residents of Beijing, 2007 – 2013[J]. Chinese Journal of Public Health, 2022, 38(3): 344-350. doi: 10.11847/zgggws1134217

高温热浪对北京市居民死亡影响附加效应

doi: 10.11847/zgggws1134217
基金项目: 生态环境部委托项目(202046);国际合作项目(209387/Z/17/Z)
详细信息
    作者简介:

    牛彦麟(1990 – ),男,河北张家口人,主治医师,博士在读,主要从事气候变化与健康研究

    通讯作者:

    刘起勇,E-mail:liuqiyong@icdc.cn

  • 中图分类号: R 181.3+4

Added effect of heat waves on mortality in residents of Beijing, 2007 – 2013

  • 摘要:   目的  了解高温热浪对北京市居民死亡风险的附加效应,为制定极端天气事件相关的公共卫生策略提供科学依据。  方法  收集北京市2007 — 2013年逐日死亡人数与同期气象、空气污染资料,应用分布滞后非线性模型建立气温、热浪与死亡之间的暴露反应关系,通过对比热浪日与非热浪日之间的死亡风险来估计不同热浪定义时其附加效应,并分别应用阶跃函数和二次样条函数估计不同热浪持续时间所致的附加效应。  结果  随着热浪定义中阈值温度和持续时间的增加,北京市总热浪日数逐渐减少。不同定义下热浪所致的附加效应不同,热浪阈值温度为研究期间日平均气温的第95分位数(27.62 ℃)、持续时间 ≥ 4 d时,高温热浪对非意外死亡影响的附加效应最大,死亡风险可增加11 %(95 % CI = 4 %~18 %)。热浪持续时间超过2 d后其附加效应开始显现,在超过6 d后急剧上升。对于呼吸系统疾病和循环系统疾病所致死亡,热浪的附加效应最高可分别使其死亡风险增加34 %(95 % CI = 12 %~60 %)、14 %(95 % CI = 4 %~24 %)。女性、中老年、特别是受教育程度较低的人群为高温热浪的敏感人群。  结论  北京市高温热浪可显著增加居民死亡风险,存在因持续高温所致的附加效应,呼吸系统疾病和循环系统疾病患者、女性、中老年、特别是受教育程度较低的人群尤为敏感。
  • 图  1  热浪持续时间对非意外死亡的附加效应

    注:实线及灰色阴影部分为二次样条函数拟合曲线及95 % CI,虚线为阶跃函数拟合曲线。

    图  2  热浪持续时间对不同亚组死亡的附加效应

    注:a. 不同死因;b. 性别;c. 年龄组;d. 受教育程度(实线及灰色阴影部分为二次样条函数拟合曲线及95 % CI,虚线为阶跃函数拟合曲线。)

    表  1  北京市2007 — 2013年5 — 9月日死亡人数、气象与空气污染因素基本情况

    项目最小值P25中位数平均值P75最大值
    日死亡人数 非意外死亡 112 163 180 180 196 280
    呼吸系统疾病 5 14 17 17 20 47
    循环系统疾病 52 76 85 85 94 173
    性别 男性 61 91 101 101 111 147
    女性 50 70 78 79 87 133
    年龄(岁) < 65 22 37 42 42 47 70
    65~74 15 29 33 33 37 62
    ≥ 75 45 82 96 96 109 163
    受教育程度 文盲 4 22 40 37 47 107
    小学 22 44 51 51 57 84
    初中及以上 44 74 84 84 94 133
    环境条件 平均温度(℃) 8.61 20.17 22.97 22.44 25.12 31.04
    相对湿度(%) 17.19 52.48 67.14 63.73 76.76 93.65
    PM2.5(μg/m3 10.72 43.43 67.64 68.93 88.82 192.09
    下载: 导出CSV

    表  2  不同热浪定义时北京市2007 — 2013年5 — 9月高温热浪特征

    热浪定义日平均气温相对
    阈值 ≥(th,℃)
    持续时间
    ≥(d)
    总热浪
    日数
    热浪最长
    持续日数
    热浪持续时间
    > 3 d的日数
    热浪持续时间
    > 5 d的日数
    QAIC
    HW1 90.0,26.75 2 57 8 16 5 8354.83
    HW2 92.5,27.24 2 41 8 9 3 8354.49
    HW3 95.0,27.62 2 23 8 6 3 8353.83
    HW4 90.0,26.75 3 33 7 10 2 8354.86
    HW5 92.5,27.24 3 23 7 5 2 8355.15
    HW6 95.0,27.62 3 14 7 4 2 8338.81
    HW7 90.0,26.75 4 23 6 5 1 8354.34
    HW8 92.5,27.24 4 14 6 3 1 8347.43
    HW9 95.0,27.62 4 8 6 3 1 8342.68
    下载: 导出CSV

    表  3  热浪对全部及不同亚组居民死亡影响的附加效应

    项目HW1HW2HW3HW4HW5
    日死亡人数 非意外死亡 0.99(0.96,1.02) 0.99(0.95,1.02) 1.02(0.98,1.07) 1.01(0.97,1.05) 1.00(0.96,1.05)
    呼吸系统疾病 1.10(0.99,1.21) 1.13(1.01,1.26) a 1.17(1.02,1.34) a 1.18(1.06,1.32) a 1.18(1.04,1.33) a
    循环系统疾病 0.96(0.91,1.00) 0.97(0.92,1.02) 1.02(0.96,1.09) 0.98(0.93,1.04) 1.01(0.95,1.07)
    性别 男性 0.98(0.94,1.03) 0.98(0.93,1.03) 1.02(0.96,1.08) 1.00(0.95,1.05) 1.01(0.96,1.07)
    女性 1.00(0.95,1.05) 0.99(0.94,1.05) 1.03(0.97,1.10) 1.02(0.97,1.08) 0.99(0.94,1.06)
    年龄(岁) < 65 0.93(0.87,1.00) 0.95(0.88,1.02) 0.95(0.87,1.04) 0.92(0.85,0.99) a 0.92(0.84,1.00)
    65~74 1.03(0.96,1.11) 1.03(0.95,1.12) 1.03(0.93,1.13) 1.16(1.07,1.26) a 1.18(1.08,1.30) a
    ≥ 75 1.00(0.96,1.05) 1.00(0.95,1.05) 1.07(1.01,1.13) a 1.01(0.96,1.06) 1.00(0.95,1.06)
    受教育程度 文盲 1.09(0.96,1.25) 1.25(1.07,1.45) a 1.27(1.06,1.53) a 1.17(1.00,1.36) a 1.36(1.15,1.60) a
    小学 0.96(0.91,1.03) 0.95(0.89,1.02) 0.97(0.90,1.06) 0.95(0.89,1.02) 0.92(0.85,0.99) a
    初中及以上 0.97(0.91,1.03) 0.91(0.85,0.97) a 0.94(0.87,1.02) 0.99(0.92,1.05) 0.92(0.85,0.99) a
      注:a P < 0.05
    下载: 导出CSV
    续表 3 热浪对全部及不同亚组居民死亡影响的附加效应
    项目HW6HW7HW8HW9
    日死亡人数 非意外死亡 1.10(1.04,1.16) a 1.02(0.97,1.06) 1.06(1.01,1.12) a 1.11(1.04,1.18) a
    呼吸系统疾病 1.27(1.10,1.48) a 1.21(1.07,1.37) a 1.26(1.09,1.46) a 1.34(1.12,1.60) a
    循环系统疾病 1.13(1.06,1.22) a 0.99(0.93,1.05) 1.07(0.99,1.14) 1.14(1.04,1.24) a
    性别 男性 1.07(1.00,1.15) a 1.02(0.97,1.08) 1.05(0.98,1.12) 1.08(0.99,1.17)
    女性 1.13(1.05,1.22) a 1.01(0.95,1.07) 1.09(1.01,1.17) a 1.14(1.04,1.25) a
    年龄(岁) < 65 1.03(0.93,1.14) 0.92(0.85,1.00) 0.98(0.89,1.09) 1.05(0.92,1.19)
    65~74 1.17(1.04,1.31) a 1.16(1.06,1.27) a 1.15(1.04,1.28) a 1.10(0.96,1.27)
    ≥ 75 1.12(1.05,1.20) a 1.02(0.97,1.08) 1.10(1.03,1.17) a 1.15(1.06,1.25) a
    受教育程度 文盲 1.39(1.14,1.70) a 1.29(1.09,1.52) a 1.65(1.37,1.99) a 1.44(1.14,1.81) a
    小学 1.08(0.98,1.19) 0.96(0.89,1.03) 0.98(0.89,1.07) 1.09(0.97,1.22)
    初中及以上 0.98(0.90,1.08) 0.95(0.88,1.03) 0.9(0.82,0.99) a 0.96(0.85,1.08)
      注:a P < 0.05
    下载: 导出CSV

    表  4  热浪定义为HW6时不同亚组间热浪的附加效应比较

    项目对比组βSDZ 值P
    日死亡人数 呼吸系统疾病 循环系统疾病 0.242 0.077 1.359 0.174
    循环系统疾病 0.126 0.037
    性别 男性 女性 0.069 0.035 – 1.054 0.292
    女性 0.123 0.037
    年龄(岁) < 65 65~74 0.031 0.053 – 1.577 0.115
    65~74 ≥ 75岁 0.155 0.058 0.590 0.555
    ≥ 75 < 65岁 0.115 0.035 – 1.325 0.185
    受教育程度 文盲 小学 0.331 0.102 2.273 0.023
    小学 初中及以上 0.074 0.049 1.307 0.191
    初中及以上 文盲 – 0.016 0.048 – 3.074 0.002
    下载: 导出CSV
  • [1] Cai WJ, Zhang C, Suen HP, et al. The 2020 China report of the Lancet Countdown on health and climate change[J]. The Lancet Public Health, 2021, 6(1): e64 – e81.
    [2] Li TT, Ban J, Horton RM, et al. Heat-related mortality projections for cardiovascular and respiratory disease under the changing climate in Beijing, China[J]. Scientific Reports, 2015, 5: 11441. doi: 10.1038/srep11441
    [3] 林巧绚. 基于死亡风险评估的中国不同区域热浪定义及其死亡负担研究[D]. 广州: 暨南大学, 2017.
    [4] Campbell S, Remenyi TA, White CJ, et al. Heatwave and health impact research: a global review[J]. Health and Place, 2018, 53: 210 – 218. doi: 10.1016/j.healthplace.2018.08.017
    [5] Hajat S, Armstrong B, Baccini M, et al. Impact of high temperatures on mortality: is there an added heat wave effect?[J]. Epidemiology, 2006, 17(6): 632 – 638. doi: 10.1097/01.ede.0000239688.70829.63
    [6] Xue T, Zheng YX, Tong D, et al. Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000 – 2016: a machine learning method with inputs from satellites, chemical transport model, and ground observations[J]. Environment International, 2019, 123: 345 – 357. doi: 10.1016/j.envint.2018.11.075
    [7] Yang J, Yin P, Sun JM, et al. Heatwave and mortality in 31 major Chinese cities: definition, vulnerability and implications[J]. Science of the Total Environment, 2019, 649: 695 – 702. doi: 10.1016/j.scitotenv.2018.08.332
    [8] Gasparrini A, Armstrong B. The impact of heat waves on mortality[J]. Epidemiology, 2011, 22(1): 68 – 73. doi: 10.1097/EDE.0b013e3181fdcd99
    [9] 杨军, 欧春泉, 丁研, 等. 分布滞后非线性模型[J]. 中国卫生统计, 2012, 29(5): 772 – 773, 777.
    [10] Clogg CC, Petkova E, Haritou A. Statistical methods for comparing regression coefficients between models[J]. American Journal of Sociology, 1995, 100(5): 1261 – 1293. doi: 10.1086/230638
    [11] Paternoster R, Brame R, Mazerolle P, et al. Using the correct statistical test for the equality of regression coefficients[J]. Criminology, 1998, 36(4): 859 – 866. doi: 10.1111/j.1745-9125.1998.tb01268.x
    [12] Lee WK, Lee HA, Lim YH, et al. Added effect of heat wave on mortality in Seoul, Korea[J]. International Journal of Biometeoro-logy, 2016, 60(5): 719 – 726. doi: 10.1007/s00484-015-1067-x
    [13] Chen K, Bi J, Chen J, et al. Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China[J]. Science of the Total Environment, 2015, 506–507: 18 – 25.
    [14] 曾韦霖. 广东四地区热浪对死亡的影响及热浪特点的效应修饰作用[D]. 广州: 暨南大学, 2013.
    [15] Aboubakri O, Khanjani N, Jahani Y, et al. Attributable risk of mortality associated with heat and heat waves: a time-series study in Kerman, Iran during 2005 – 2017[J]. Journal of Thermal Biology, 2019, 82: 76 – 82. doi: 10.1016/j.jtherbio.2019.03.013
    [16] Yin P, Chen RJ, Wang LJ, et al. The added effects of heatwaves on cause-specific mortality: a nationwide analysis in 272 Chinese cities[J]. Environment International, 2018, 121: 898 – 905. doi: 10.1016/j.envint.2018.10.016
    [17] Dong WT, Zeng Q, Ma Y, et al. Impact of heat wave definitions on the added effect of heat waves on cardiovascular mortality in Beijing, China[J]. International Journal of Environmental Research and Public Health, 2016, 13(9): 933. doi: 10.3390/ijerph13090933
    [18] Gronlund CJ, Zanobetti A, Schwartz JD, et al. Heat, heat waves, and hospital admissions among the elderly in the United States, 1992 – 2006[J]. Environ Health Perspect, 2014, 122(11): 1187 – 1192. doi: 10.1289/ehp.1206132
    [19] Kim EJ, Kim H. Effect modification of individual- and regional-scale characteristics on heat wave-related mortality rates between 2009 and 2012 in Seoul, South Korea[J]. Science of the Total Environment, 2017, 595: 141 – 148. doi: 10.1016/j.scitotenv.2017.03.248
    [20] 马文娟. 温度对我国16城市居民死亡影响的研究[D]. 上海: 复旦大学, 2014.
    [21] Guo YM, Gasparrini A, Armstrong BG, et al. Heat wave and mortality: a multicountry, multicommunity study[J]. Environmental Health Perspectives, 2017, 125(8): 087006. doi: 10.1289/EHP1026
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  17
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-03-10

目录

    /

    返回文章
    返回