Predication of hand,foot and mouth disease incidence in Hunan province using SARIMA model
-
摘要: 目的 建立湖南省手足口病发病趋势的SARIMA模型,为手足口病的预防和控制提供参考依据。方法 收集中国疾病预防控制信息系统2008年5月-2013年12月湖南省手足口病月发病率数据建模,以2014年1-7月的月发病率数据进行验证,并对2014年8月-2015年7月发病情况进行预测;应用SPSS 18.0中的"Define Dates"模块和"ForeCasting"模块进行分析,建立季节性差分自回归移动平均模型(SARIMA)。结果 湖南省手足口病月发病率发病趋势预测模型为SARIMA(1,0,0)(1,1,0)12,模型自回归参数AR1=0.765,(t=8.789,P<0.001),残差为白噪声(Ljung-Box Q=15.420,P=0.494),预测值与实际值的相对误差范围为6.90%~46.31%,平均相对误差为20.37%;预测2014年发病率2次高峰分别在5月份和11月份,均高于2013年同月份的发病率;2015年上半年高峰期也在5月份,低于2014年同月份的发病率。结论 SARIMA(1,0,0)(1,1,0)12拟合效果较好,可用于湖南省手足口病月发病率的短期预测。
-
关键词:
- 手足口病 /
- 季节性差分自回归移动平均模型(SARIMA) /
- 时间序列
Abstract: Objective To establish a seasonal autoregressive integrated moving average(SARIMA)model to predicate incidence trend of hand,foot and mouth disease(HFMD)in Hunan province for effective control of the disease.Methods Data on monthly incidence of HFMD from May 2008 to December 2013 were collected from "China Information System for Disease Control and Prevention" for the construction of the SARIMA model and then the established model was verified based on HFMD incidence data from January to July of 2014;finally monthly HFMD incidences from August 2014 to July 2015 were predicted with the model established.Modules of Define Dates and ForeCasting in SPSS 18.0 were used in the analyses.Results SARIMA(1,0,0)(1,1,0)12 was established for monthly HFMD incidence in Hunan province;the autoregressive model parameter of AR1 was 0.765(t=8.789,P<0.001)and the residuals of the model were white noise(Ljung-Box Q=15.420,P=0.494).The relative error between actual and predicted values ranged from 6.90% to 46.31% and the average of the relative error was 20.37%.Based on the predication of the model,the incidence peak of HFMD in 2014 would be around in May and November,and the peak incidences in 2014 would be higher than those in same months of 2013 and a peak incidence in the first half year of 2015 would occur in May and could be lower than that in the same month of 2014.Conclusion The established SARIMA(1,0,0)(1,1,0)12model is of good fitting effect and could be applied in short-term predication of HFMD incidence in Hunan province. -
[1] 卫生部办公厅.手足口病诊疗指南(2010年版)[J].柳州医学,2012,25(2):140-143. [3] 王丙刚,曲波,郭海强,等.传染病预测的数学模型研究[J].中国卫生统计,2007,24(5):536-540. [4] 时照华.探索ARIMA模型在呼吸道传染病疫情预测中的应用[D].合肥:安徽医科大学硕士学位论文,2013. [5] 肖洪,田怀玉,赵暕,等.传染病模型分析与预测方法研究进展[J].中华流行病学杂志,2011,32(1):81-85. [6] Box GEP,Jenkins G.Time series analysis:forecasting and control[M].San Francisco:Holden Day,1976:305-320. [7] 杨召,叶中辉,尤爱国,等.乘积季节ARIMA模型在结核病发病率预测中应用[J].中国公共卫生,2013,29(4):469-472. [8] 石雷.细菌性痢疾月发病率ARIMA季节模型预测分析[J].中国公共卫生,2014,30(9):1234-1235. [9] 恩德斯,志超.应用计量经济学:时间序列分析[M].北京:高等教育出版社,2006:92-96. [10] 张文彤.SPSS 11统计分析教程(高级篇)[M].北京:北京希望电子出版社,2002:630-631. [11] 王燕.应用时间序列分析[M].北京:中国人民大学出版社,2005:16-90. [12] 孙振球.医学统计学[M].北京:人民卫生出版社,2013:390-403. [13] 贾静,郝毕,董礼艳,等.ARIMA模型预测青岛市手足口病发病趋势[J].中国公共卫生管理,2014,30(1):70-72. [14] 刘涛,王显军,姜宝法,等.SARIMA模型预测山东省手足口病发病趋势[J].中国卫生统计,2013,30(5):697-700. [15] 杨培荣,田辉,严钏元.自回归移动平均模型在宝鸡市细菌性痢疾月发病率预测中的应用[J].公共卫生与预防医学,2012,23(1):16-19. [16] 黄晓霞,张顺先,赵俊伟,等.采用自回归移动平均模型预测中国手足口病月发病率[J].疾病监测,2013,28(5):396-399. [17] 吴孟泉,赵凯.基于ARIMA模型的2009年山东省手足口病疫情分析及预测[J].鲁东大学学报:自然科学版,2011,27(1):71-75. -

计量
- 文章访问数: 938
- HTML全文浏览量: 344
- PDF下载量: 70
- 被引次数: 0