Advance Search
Volume 38 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
GAO Hong-ying, SHEN He-qing. Detection of plastic particles in environmental samples: status and perspective[J]. Chinese Journal of Public Health, 2022, 38(1): 122-128. doi: 10.11847/zgggws1128897
Citation: GAO Hong-ying, SHEN He-qing. Detection of plastic particles in environmental samples: status and perspective[J]. Chinese Journal of Public Health, 2022, 38(1): 122-128. doi: 10.11847/zgggws1128897

Detection of plastic particles in environmental samples: status and perspective

doi: 10.11847/zgggws1128897
  • Received Date: 2020-03-11
    Available Online: 2021-08-12
  • Publish Date: 2022-01-10
  • To summarize studies on detections of microplastic particles in environmental and biological samples. The reported methods′ theory, methodology, technical characteristics, and application were described and their main advantages/disadvantages and research directions were discussed. Major technologies for detections of microplastic particles in environmental and biological samples include microscope- and imaging-based particle morphological characterization, light spectrum-based plastic molecular and atomic analysis, pyrolysis-based reaction characteristics and products analysis and other analytical methods. There are great disparities in detection results of microplastic particles in various types samples using different methods; as yet there is no a method which could meet simultaneous analysis on morphology, composition, and trace concentration of micro- and nano-plastic particles in complex samples. While, pyrolysis-based gas chromatography-mass spectrometry could be employed as a general analysis on particles with specific size in prepared samples; combined with pyrolytic condition optimization and utilization of high-throughput mass spectrometry detector, the method could be applied to detections of trace plastic in various environmental and biological samples.
  • loading
  • [1]
    Zhang F, Wang XH, Xu JY, et al. Food-web transfer of microplastics between wild caught fish and crustaceans in East China Sea[J]. Marine Pollution Bulletin, 2019, 146: 173 – 182. doi: 10.1016/j.marpolbul.2019.05.061
    World Health Organization. Microplastics in drinking water[R]. Geneva: World Health Organization, 2019.
    PlasticsEurope. Plastics – the facts 2016: an analysis of European plastics production, demand and waste data[S]. Brussels Belgium, 2016.
    Geyer R, Jambeck JR, Law KL, et al. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782
    Gajšt T, Bizjak T, Palatinus A, et al. Sea surface microplastics in Slovenian part of the Northern Adriatic[J]. Marine Pollution-Bulletin, 2016, 113(1/2): 392 – 399.
    Lenz R, Enders K, Stedmon CA, et al. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement[J]. Marine Pollution Bulletin, 2015, 100(1): 82 – 91. doi: 10.1016/j.marpolbul.2015.09.026
    Collard F, Gasperi J, Gabrielsen GW, et al. Plastic particle ingestion by wild freshwater fish: a critical review[J]. Environ-mental Science and Technology, 2019, 53(22): 12974 – 12988. doi: 10.1021/acs.est.9b03083
    Eriksen M, Mason S, Wilson S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes[J]. Marine Pollution Bulletin, 2013, 77(1/2): 177 – 182.
    Mintenig SM, Löder MGJ, Primpke S, et al. Low numbers of microplastics detected in drinking water from ground water sources[J]. Science of the Total Environment, 2019, 648: 631 – 635. doi: 10.1016/j.scitotenv.2018.08.178
    Pivokonsky M, Cermakova L, Novotna K, et al. Occurrence of microplastics in raw and treated drinking water[J]. Science of the Total Environment, 2018, 643: 1644 – 1651. doi: 10.1016/j.scitotenv.2018.08.102
    Mason SA, Welch VG, Neratko J. Synthetic polymer contamination in bottled water[J]. Frontiers in Chemistry, 2018, 6: 407. doi: 10.3389/fchem.2018.00407
    Hernandez LM, Xu EG, Larsson HCE, et al. Plastic teabags release billions of microparticles and nanoparticles into tea[J]. Environ-mental Science and Technology, 2019, 53(21): 12300 – 12310. doi: 10.1021/acs.est.9b02540
    Liu CG, Li J, Zhang YL, et al. Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure[J]. Environment International, 2019, 128: 116 – 124. doi: 10.1016/j.envint.2019.04.024
    Wang L, Zhang JJ, Hou SG, et al. A simple method for quantifying polycarbonate and polyethylene terephthalate microplastics in environmental samples by liquid chromatography-tandem mass spectrometry[J]. Environmental Science and Technology Letters, 2017, 4(12): 530 – 534. doi: 10.1021/acs.estlett.7b00454
    Huang Y, Liu Q, Jia WQ, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260: 114096. doi: 10.1016/j.envpol.2020.114096
    Liu MT, Lu SB, Song Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution, 2018, 242: 855 – 862. doi: 10.1016/j.envpol.2018.07.051
    Qi RM, Jones DL, Li Z, et al. Behavior of microplastics and plastic film residues in the soil environment: a critical review[J]. Science of the Total Environment, 2020, 703: 134722. doi: 10.1016/j.scitotenv.2019.134722
    Zhou BY, Wang JQ, Zhang HB, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film[J]. Journal of Hazardous Materials, 2020, 388: 121814.
    Dekiff JH, Remy D, Klasmeier J, et al. Occurrence and spatial distribution of microplastics in sediments from Norderney[J]. Environmental Pollution, 2014, 186: 248 – 256. doi: 10.1016/j.envpol.2013.11.019
    Fries E, Dekiff JH, Willmeyer J, et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy[J]. Environ Sci-Process Impacts, 2013, 15(10): 1949 – 1956.
    Bellas J, Martínez-Armental J, Martínez-Cámara A, et al. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts[J]. Marine Pollution Bulletin, 2016, 109(1): 55 – 60. doi: 10.1016/j.marpolbul.2016.06.026
    Li JN, Qu XY, Su L, et al. Microplastics in mussels along the coastal waters of China[J]. Environmental Pollution, 2016, 214: 177 – 184. doi: 10.1016/j.envpol.2016.04.012
    Li JN, Yang DQ, Li L, et al. Microplastics in commercial bivalves from China[J]. Environmental Pollution, 2015, 207: 190 – 195. doi: 10.1016/j.envpol.2015.09.018
    Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption[J]. Environmental Pollution, 2014, 193: 65 – 70. doi: 10.1016/j.envpol.2014.06.010
    Zhang JJ, Peng YW, Wang L. Occurrence of microplastics in human faeces of children in Tianjin, China[J]. Abstr Pap Am Chem Soc, 2018, 256: 1.
    Zhang JJ, Wang L, Kannan K. Polyethylene terephthalate and polycarbonate microplastics in pet food and feces from the united states[J]. Environmental Science and Technology, 2019, 53(20): 12035 – 12042. doi: 10.1021/acs.est.9b03912
    Deng YF, Zhang Y, Lemos B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific Reports, 2017, 7: 46687. doi: 10.1038/srep46687
    Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems[J]. Angewandte Chemie International Edition, 2017, 56(7): 1720 – 1739. doi: 10.1002/anie.201606957
    Vandermeersch G, Van Cauwenberghe L, Janssen CR, et al. A critical view on microplastic quantification in aquatic organisms[J]. Environmental Research, 2015, 143: 46 – 55. doi: 10.1016/j.envres.2015.07.016
    Fischer M, Scholz-Bottcher BM. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass spectrometry[J]. Environmental Science and Technology, 2017, 51(9): 5052 – 5060. doi: 10.1021/acs.est.6b06362
    Karami A, Golieskardi A, Choo CK, et al. A high-performance protocol for extraction of microplastics in fish[J]. Science of the Total Environment, 2017, 578: 485 – 494. doi: 10.1016/j.scitotenv.2016.10.213
    Gniadek M, Dąbrowska A. The marine nano- and microplastics characterisation by SEM-EDX: the potential of the method in comparison with various physical and chemical approaches[J]. Marine Pollution Bulletin, 2019, 148: 210 – 216. doi: 10.1016/j.marpolbul.2019.07.067
    Triebskorn R, Braunbeck T, Grummt T, et al. Relevance of nano-and microplastics for freshwater ecosystems: a critical review[J]. Trac Trends in Analytical Chemistry, 2019, 110: 375 – 392. doi: 10.1016/j.trac.2018.11.023
    Xu JL, Thomas KV, Luo ZS, et al. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects[J]. Trac Trends in Analytical Chemistry, 2019, 119: 115629. doi: 10.1016/j.trac.2019.115629
    Fortin S, Song B, Burbage C. Quantifying and identifying microplastics in the effluent of advanced wastewater treatment systems using Raman microspectroscopy[J]. Marine Pollution Bulletin, 2019, 149: 110579. doi: 10.1016/j.marpolbul.2019.110579
    Yu JP, Wang PY, Ni FL, et al. Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy[J]. Marine Pollution Bulletin, 2019, 145: 153 – 160. doi: 10.1016/j.marpolbul.2019.05.037
    Majewsky M, Bitter H, Eiche E, et al. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC)[J]. Science of the Total Environment, 2016, 568: 507 – 511. doi: 10.1016/j.scitotenv.2016.06.017
    Elert AM, Becker R, Duemichen E, et al. Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters?[J]. Environmental Pollution, 2017, 231: 1256 – 1264. doi: 10.1016/j.envpol.2017.08.074
    Duemichen E, Eisentraut P, Celina M, et al. Automated thermal extraction-desorption gas chromatography mass spectrometry: a multifunctional tool for comprehensive characterization of polymers and their degradation products[J]. Journal of Chromatography A, 2019, 1592: 133 – 142. doi: 10.1016/j.chroma.2019.01.033
    Hermabessiere L, Himber C, Boricaud B, et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics[J]. Analytical and Bioanalytical Chemistry, 2018, 410(25): 6663 – 6676. doi: 10.1007/s00216-018-1279-0
    Peters CA, Hendrickson E, Minor EC, et al. Pyr-GC/MS analysis of microplastics extracted from the stomach content of benthivore fish from the Texas Gulf Coast[J]. Marine Pollution Bulletin, 2018, 137: 91 – 95. doi: 10.1016/j.marpolbul.2018.09.049
    Kirstein IV, Kirmizi S, Wichels A, et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles[J]. Marine Environmental Research, 2016, 120: 1 – 8. doi: 10.1016/j.marenvres.2016.07.004
    Dazzi A, Prater CB. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging[J]. Chemical Reviews, 2017, 117(7): 5146 – 5173. doi: 10.1021/acs.chemrev.6b00448
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views (306) PDF downloads(82) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint