Citation: | WANG Shu-zi, LIU Zhi-dong, GAO Qi, . Lag effect of humidex on bacillary dysentery and its regional heterogeneity in North China[J]. Chinese Journal of Public Health, 2022, 38(1): 80-84. doi: 10.11847/zgggws1131829 |
[1] |
曹卉. 2005 — 2016年全国细菌性痢疾的空间分布特征及发病预测[D]. 吉林: 吉林大学, 2019.
|
[2] |
World Health Organization. Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1[EB/OL]. (2004 – 12 – 18) [2020 – 04 – 06]. https://www.who.int/maternal_child_adolescent/documents/9241592330/en/.
|
[3] |
李硕, 张云辉, 王永怡, 等. 2017年全球传染病热点回顾[J]. 传染病信息, 2018, 31(1): 5 – 10. doi: 10.3969/j.issn.1007-8134.2018.01.002
|
[4] |
国家科技基础条件平台, 国家人口健康科学数据中心. 公共卫生科学数据中心[EB/OL]. (2004 – 01 – 01) [2020 – 04 – 06]. http://www.phsciencedata.cn/Share/.
|
[5] |
Liu ZD, Tong MX, Xiang JJ, et al. Daily temperature and bacillary dysentery: estimated effects, attributable risks, and future disease burden in 316 Chinese cities[J]. Environmental Health Perspectives, 2020, 128(5): 057008. doi: 10.1289/EHP5779
|
[6] |
Liu ZD, Liu YY, Zhang Y, et al. Effect of ambient temperature and its effect modifiers on bacillary dysentery in Jinan, China[J]. Science of the Total Environment, 2019, 650: 2980 – 2986. doi: 10.1016/j.scitotenv.2018.10.053
|
[7] |
Li ZJ, Wang LG, Sun WG, et al. Identifying high-risk areas of bacillary dysentery and associated meteorological factors in Wuhan, China[J]. Scientific Reports, 2013, 3(1): 3239. doi: 10.1038/srep03239
|
[8] |
Li ZJ, Zhang XJ, Hou XX, et al. Nonlinear and threshold of the association between meteorological factors and bacillary dysentery in Beijing, China[J]. Epidemiology and Infection, 2015, 143(16): 3510 – 3519. doi: 10.1017/S0950268815001156
|
[9] |
张衡, 赵科伕, 何睿欣, 等. 温湿指数对合肥市细菌性痢疾影响的时间序列研究[J]. 中华流行病学杂志, 2017, 38(11): 1523 – 1527. doi: 10.3760/cma.j.issn.0254-6450.2017.11.017
|
[10] |
中国气象局国家气象中心, 中国气象局预测减灾司. 中国气象地理区划手册[M]. 北京: 气象出版社, 2006.
|
[11] |
Pan RB, Gao JJ, Wang X, et al. Impacts of exposure to humidex on the risk of childhood asthma hospitalizations in Hefei, China: effect modification by gender and age[J]. Science of the Total Environment, 2019, 691: 296 – 305. doi: 10.1016/j.scitotenv.2019.07.026
|
[12] |
Smoyer-Tomic KE, Rainham DG. Beating the heat: development and evaluation of a Canadian hot weather health-response plan[J]. Environmental Health Perspectives, 2001, 109(12): 1241 – 1248. doi: 10.1289/ehp.011091241
|
[13] |
Conti S, Meli P, Minelli G, et al. Epidemiologic study of mortality during the summer 2003 heat wave in Italy[J]. Environmental Research, 2005, 98(3): 390 – 399. doi: 10.1016/j.envres.2004.10.009
|
[14] |
国家统计局城市社会经济调查司. 中国城市统计年鉴[M]. 北京: 中国统计出版社, 2016.
|
[15] |
王海涛, 刘志东, 劳家辉, 等. 浙江省气温对其他感染性腹泻的滞后效应及影响因素[J]. 中华流行病学杂志, 2019, 40(8): 960 – 964. doi: 10.3760/cma.j.issn.0254-6450.2019.08.016
|
[16] |
Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associations[J]. Statistics in Medicine, 2012, 31(29): 3821 – 3839. doi: 10.1002/sim.5471
|
[17] |
Gasparrini A, Armstrong B. Reducing and meta-analysing estimates from distributed lag non-linear models[J]. BMC Medical Research Methodology, 2013, 13(1): 1. doi: 10.1186/1471-2288-13-1
|
[18] |
Mackey BM, Kerridge AL. The effect of incubation temperature and inoculum size on growth of Salmonellae in minced beef[J]. International Journal of Food Microbiology, 1988, 6(1): 57 – 65. doi: 10.1016/0168-1605(88)90085-2
|
[19] |
Nygren BL, Schilling KA, Blanton EM, et al. Foodborne outbreaks of shigellosis in the USA, 1998 – 2008[J]. Epidemiology and Infection, 2013, 141(2): 233 – 241. doi: 10.1017/S0950268812000222
|
[20] |
Kovats RS, Edwards SJ, Hajat S, et al. The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries[J]. Epidemiology and Infection, 2004, 132(3): 443 – 453. doi: 10.1017/S0950268804001992
|
[21] |
Wu XX, Liu JN, Li CL, et al. Impact of climate change on dysentery: scientific evidences, uncertainty, modeling and projections[J]. Science of the Total Environment, 2020, 714: 136702. doi: 10.1016/j.scitotenv.2020.136702
|
[22] |
Igo MJ, Schaffner DW. Quantifying the influence of relative humidity, temperature, and diluent on the survival and growth of Enterobacter aerogenes[J]. Journal of Food Protection, 2019, 82(12): 2135 – 2147. doi: 10.4315/0362-028X.JFP-19-261
|
[23] |
贾蕾, 曹卫华, 贺雄, 等. 北京市痢疾发病率影响因素分析[J]. 中国公共卫生, 2007, 23(8): 1004 – 1006. doi: 10.3321/j.issn:1001-0580.2007.08.055
|
[24] |
Uehara S. Studies on the etiology of toxic dysentery (Ekiri) with special reference to the effects of high temperature and humidity and choline deficiency on the reticuloendothelial function[J]. Pediatrics International, 1964, 6(1): 56. doi: 10.1111/j.1442-200X.1964.tb01121.x
|
[25] |
Fan CN, Liu FF, Zhao X, et al. An alternative comprehensive index to quantify the interactive effect of temperature and relative humidity on hand, foot and mouth disease: a two-stage time series study including 143 cities in mainland China[J]. Science of the Total Environment, 2020, 740: 140106. doi: 10.1016/j.scitotenv.2020.140106
|
[26] |
Curriero FC, Heiner KS, Samet JM, et al. Temperature and mortality in 11 cities of the eastern United States[J]. American Journal of Epidemiology, 2002, 155(1): 80 – 87. doi: 10.1093/aje/155.1.80
|
[27] |
Xu ZW, Hu WB, Zhang YW, et al. Spatiotemporal pattern of bacillary dysentery in China from 1990 to 2009: what is the driver behind?[J]. PLoS One, 2014, 9(8): e104329. doi: 10.1371/journal.pone.0104329
|
[28] |
Zhang H, Si YL, Wang XF, et al. Patterns of bacillary dysentery in China, 2005 – 2010[J]. International Journal of Environmental Research and Public Health, 2016, 13(2): 164. doi: 10.3390/ijerph13020164
|
[29] |
Bo ZY, Ma Y, Chang ZR, et al. The spatial heterogeneity of the associations between relative humidity and pediatric hand, foot and mouth disease: evidence from a nation-wide multicity study from mainland China[J]. Science of the Total Environment, 2020, 707: 136103. doi: 10.1016/j.scitotenv.2019.136103
|