Advance Search
Volume 37 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZHANG Xiao-meng, XU Cai-hong, PANG Xue-wen, . Progress in researches on novel tuberculosis vaccine for different populations: a review[J]. Chinese Journal of Public Health, 2021, 37(11): 1698-1703. doi: 10.11847/zgggws1133162
Citation: ZHANG Xiao-meng, XU Cai-hong, PANG Xue-wen, . Progress in researches on novel tuberculosis vaccine for different populations: a review[J]. Chinese Journal of Public Health, 2021, 37(11): 1698-1703. doi: 10.11847/zgggws1133162

Progress in researches on novel tuberculosis vaccine for different populations: a review

doi: 10.11847/zgggws1133162
  • Received Date: 2020-11-16
    Available Online: 2021-08-12
  • Publish Date: 2021-11-10
  • Tuberculosis (TB) is a serious contagious disease caused by a single infectious pathogen, which brings serious social and economic problems. Bacillus Calmette-Guérin (BCG) vaccine is currently the only licensed vaccine for preventing TB. However, considering the limited protective duration of the BCG vaccine, low protection ability against TB in latent TB infection, and the vaccination risk of newborns with immunodeficiency, it is imperative to study a new anti-tuberculosis vaccine. The purpose of this review is to summarize current progress in researches on new tuberculosis vaccine for different populations and to provide references for accelerating the research and development of new vaccines.
  • loading
  • [1]
    World Health Organization. Global tuberculosis report 2020[R]. Geneva: World Health Organization, 2020.
    [2]
    Lange C, Chesov D, Heyckendorf J, et al. Drug-resistant tuberculosis: an update on disease burden, diagnosis and treatment[J]. Respirology, 2018, 23(7): 656 – 673. doi: 10.1111/resp.13304
    [3]
    Chen W, Zhang H, Du X, et al. Characteristics and morbidity of the tuberculosis epidemic – China, 2019[J]. China CDC Weekly, 2020, 2(12): 181 – 184.
    [4]
    Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling[J]. PLoS Medicine, 2016, 13(10): e1002152. doi: 10.1371/journal.pmed.1002152
    [5]
    李晓迎, 徐勇胜. 儿童卡介苗接种后异常反应诊治进展[J]. 临床儿科杂志, 2020, 38(7): 554 – 557. doi: 10.3969/j.issn.1000-3606.2020.07.017
    [6]
    Zimmermann P, Finn A, Curtis N. Does BCG vaccination protect against nontuberculous mycobacterial infection? A systematic review and meta-analysis[J]. The Journal of Infectious Diseases, 2018, 218(5): 679 – 687. doi: 10.1093/infdis/jiy207
    [7]
    Nguipdop-Djomo P, Heldal E, Rodrigues LC, et al. Duration of BCG protection against tuberculosis and change in effectiveness with time since vaccination in Norway: a retrospective population-based cohort study[J]. The Lancet Infectious Diseases, 2016, 16(2): 219 – 226. doi: 10.1016/S1473-3099(15)00400-4
    [8]
    World Health Organization. BCG vaccine: WHO position paper, February 2018 – recommendations[J]. Vaccine, 2018, 36(24): 3408 – 3410. doi: 10.1016/j.vaccine.2018.03.009
    [9]
    郭伟, 徐勇胜, 万莉雅. 卡介苗相关性淋巴结炎[J]. 中华实用儿科临床杂志, 2019, 34(9): 649 – 651. doi: 10.3760/cma.j.issn.2095-428X.2019.09.003
    [10]
    Fletcher HA, Schrager L. TB vaccine development and the End TB Strategy: importance and current status[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110(4): 212 – 218. doi: 10.1093/trstmh/trw016
    [11]
    肖婧, 焦伟伟, 申晨, 等. 卡介苗免疫预防研究新进展[J]. 中华实用儿科临床杂志, 2020, 35(10): 725 – 729. doi: 10.3760/cma.j.cn101070-20200220-00204
    [12]
    张智芳, 严延生. 预防与治疗性结核病疫苗的研究进展[J]. 中国人兽共患病学报, 2018, 34(11): 1033 – 1039.
    [13]
    Martin C, Aguilo N, Gonzalo-Asensio J. Vaccination against tuberculosis[J]. Enfermedades Infecciosas y Microbiología Clínica, 2018, 36(10): 648 – 656.
    [14]
    Solans L, Gonzalo-Asensio J, Sala C, et al. The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis[J]. PLoS Pathogens, 2014, 10(5): e1004183. doi: 10.1371/journal.ppat.1004183
    [15]
    Tameris M, Mearns H, Penn-Nicholson A, et al. Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial[J]. The Lancet Respiratory Medicine, 2019, 7(9): 757 – 770. doi: 10.1016/S2213-2600(19)30251-6
    [16]
    Nieuwenhuizen NE, Kulkarni PS, Shaligram U, et al. The recombinant Bacille Calmette-Guérin vaccine VPM1002: ready for clinical efficacy testing[J]. Frontiers in Immunology, 2017, 8: 1147. doi: 10.3389/fimmu.2017.01147
    [17]
    Geoffroy C, Gaillard JL, Alouf JE, et al. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes[J]. Infection and Immunity, 1987, 55(7): 1641 – 1646. doi: 10.1128/IAI.55.7.1641-1646.1987
    [18]
    Grode L, Ganoza CA, Brohm C, et al. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial[J]. Vaccine, 2013, 31(9): 1340 – 1348. doi: 10.1016/j.vaccine.2012.12.053
    [19]
    Loxton AG, Knaul JK, Grode L, et al. Safety and immunogenicity of the recombinant Mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in South Africa[J]. Clinical and Vaccine Immunology, 2017, 24(2): e00439 – 16.
    [20]
    卢锦标, 杨蕾, 付丽丽, 等. 结核亚单位疫苗AEC/BC-C02诱导小鼠长期的抗原特异性细胞应答[J]. 中国防痨杂志, 2013, 35(1): 32 – 36.
    [21]
    卢锦标, 付丽丽, 邓海清, 等. 重组结核疫苗AEC/BC02诱导豚鼠的Ⅰ型超敏反应[J]. 中国生物制品学杂志, 2014, 27(3): 289 – 291, 295.
    [22]
    Lu JB, Chen BW, Wang GZ, et al. Recombinant tuberculosis vaccine AEC/BC02 induces antigen-specific cellular responses in mice and protects guinea pigs in a model of latent infection[J]. Journal of Microbiology, Immunology and Infection, 2015, 48(6): 597 – 603. doi: 10.1016/j.jmii.2014.03.005
    [23]
    卢锦标, 陈保文, 邓海清, 等. 结核分枝杆菌感染豚鼠接种重组结核疫苗AEC/BC02后的超敏反应分析[J]. 中华结核和呼吸杂志, 2016, 39(7): 524 – 528. doi: 10.3760/cma.j.issn.1001-0939.2016.07.007
    [24]
    Ottenhoff THM, Kaufmann SHE. Vaccines against tuberculosis: where are we and where do we need to go?[J]. PLoS Pathogens, 2012, 8(5): e1002607. doi: 10.1371/journal.ppat.1002607
    [25]
    da Costa C, Walker B, Bonavia A. Tuberculosis vaccines – state of the art, and novel approaches to vaccine development[J]. International Journal of Infectious Diseases, 2015, 32: 5 – 12. doi: 10.1016/j.ijid.2014.11.026
    [26]
    Montoya J, Solon JA, Cunanan SRC, et al. A randomized, controlled dose-finding phase II study of the M72/AS01 candidate tuberculosis vaccine in healthy PPD-positive adults[J]. Journal of Clinical Immunology, 2013, 33(8): 1360 – 1375. doi: 10.1007/s10875-013-9949-3
    [27]
    Day CL, Tameris M, Mansoor N, et al. Induction and regulation of T-cell immunity by the novel tuberculosis vaccine M72/AS01 in South African adults[J]. American Journal of Respiratory and Critical Care Medicine, 2013, 188(4): 492 – 502. doi: 10.1164/rccm.201208-1385OC
    [28]
    Penn-Nicholson A, Geldenhuys H, Burny W, et al. Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting[J]. Vaccine, 2015, 33(32): 4025 – 4034. doi: 10.1016/j.vaccine.2015.05.088
    [29]
    Thacher EG, Cavassini M, Audran R, et al. Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine in HIV-infected adults on combination antiretroviral therapy: a phase I/II, randomized trial[J]. AIDS, 2014, 28(12): 1769 – 1781. doi: 10.1097/QAD.0000000000000343
    [30]
    Idoko OT, Owolabi OA, Owiafe PK, et al. Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine when given as a booster to BCG in Gambian infants: an open-label randomized controlled trial[J]. Tuberculosis, 2014, 94(6): 564 – 578.
    [31]
    Schrager LK, Chandrasekaran P, Fritzell BH, et al. WHO preferred product characteristics for new vaccines against tuberculosis[J]. The Lancet Infectious Diseases, 2018, 18(8): 828 – 829. doi: 10.1016/S1473-3099(18)30421-3
    [32]
    苏城, 卢锦标. 结核分枝杆菌感染人群的免疫干预进展[J]. 中国医药生物技术, 2019, 14(5): 453 – 456. doi: 10.3969/j.issn.1673-713X.2019.05.011
    [33]
    World Health Organization. Tuberculosis research and development: report of a WHO working group meeting, Geneva, 9 – 11 September 1991[ER/OL]. [2020 – 12 – 16]. https://apps.who.int/iris/handle/10665/62516?locale=fr&mode=full.
    [34]
    Weng H, Huang JY, Meng XY, et al. Adjunctive therapy of Mycobacterium vaccae vaccine in the treatment of multidrug-resistant tuberculosis: a systematic review and meta-analysis[J]. Biomedical Reports, 2016, 4(5): 595 – 600. doi: 10.3892/br.2016.624
    [35]
    Huang CY, Hsieh WY. Efficacy of Mycobacterium vaccae immunotherapy for patients with tuberculosis: a systematic review and meta-analysis[J]. Human Vaccines and Immunotherapeutics, 2017, 13(9): 1960 – 1971. doi: 10.1080/21645515.2017.1335374
    [36]
    焦连丽, 宋春华. 母牛分枝杆菌菌苗(微卡)辅助治疗肺结核的研究进展[J]. 世界最新医学信息文摘, 2019, 19(7): 17 – 18.
    [37]
    Cardona PJ. RUTI: a new chance to shorten the treatment of latent tuberculosis infection[J]. Tuberculosis, 2006, 86(3 – 4): 273 – 289.
    [38]
    Gröschel MI, Prabowo SA, Cardona PJ, et al. Therapeutic vaccines for tuberculosis – a systematic review[J]. Vaccine, 2014, 32(26): 3162 – 3168. doi: 10.1016/j.vaccine.2014.03.047
    [39]
    Nell AS, D'lom E, Bouic P, et al. Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection[J]. PLoS One, 2014, 9(2): e89612. doi: 10.1371/journal.pone.0089612
    [40]
    Vilaplana C, Montané E, Pinto S, et al. Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI®[J]. Vaccine, 2010, 28(4): 1106 – 1116. doi: 10.1016/j.vaccine.2009.09.134
    [41]
    Rahman SA, Singh Y, Kohli S, et al. Reply to '"Mycobacterium indicus pranii" is a strain of Mycobacterium intracellulare': "M. indicus pranii" is a distinct strain, not derived from M. intracellulare, and is an organism at an evolutionary transition point between a fast grower and slow grower[J]. mBio, 2015, 6(2): e00352 – 15.
    [42]
    Saini V, Raghuvanshi S, Talwar GP, et al. Polyphasic taxonomic analysis establishes Mycobacterium indicus pranii as a distinct species[J]. PLoS One, 2009, 4(7): e6263. doi: 10.1371/journal.pone.0006263
    [43]
    Sharma SK, Katoch K, Sarin R, et al. Efficacy and safety of Mycobacterium indicus pranii as an adjunct therapy in category II pulmonary tuberculosis in a randomized trial[J]. Scientific Reports, 2017, 7(1): 3354. doi: 10.1038/s41598-017-03514-1
    [44]
    卢锦标, 杨蕾, 苏城, 等. 重组AEC/BC02疫苗联合化疗在豚鼠模型中的抗结核效果[J]. 中华微生物学和免疫学杂志, 2018, 38(6): 414 – 419. doi: 10.3760/cma.j.issn.0254-5101.2018.06.003
    [45]
    卢锦标, 沈小兵, 苏城, 等. 异烟肼联合重组结核疫苗AEC/BC02对结核分枝杆菌感染豚鼠的治疗效果评价[J]. 中国防痨杂志, 2017, 39(2): 123 – 128. doi: 10.3969/j.issn.1000-6621.2017.02.004
    [46]
    Coler RN, Bertholet S, Pine SO, et al. Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment[J]. The Journal of Infectious Diseases, 2013, 207(8): 1242 – 1252. doi: 10.1093/infdis/jis425
    [47]
    World Health Organization. BCG vaccine. WHO position paper[J]. Releve Epidemiologique Hebdomadaire, 2004, 79(4): 27 – 38.
    [48]
    Wang J, Thorson L, Stokes RW, et al. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis[J]. The Journal of Immunology, 2004, 173(10): 6357 – 6365. doi: 10.4049/jimmunol.173.10.6357
    [49]
    Santosuosso M, McCormick S, Zhang XZ, et al. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis[J]. Infection and Immunity, 2006, 74(8): 4634 – 4643. doi: 10.1128/IAI.00517-06
    [50]
    Xing Z, McFarland CT, Sallenave JM, et al. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis[J]. PLoS One, 2009, 4(6): e5856.
    [51]
    Whole Mycobacteria Cell Vaccines for Tuberculosis Summary Group. Developing whole mycobacteria cell vaccines for tuberculosis: workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014[J]. Vaccine, 2015, 33(26): 3047 – 3055. doi: 10.1016/j.vaccine.2015.03.056
    [52]
    von Reyn CF, Lahey T, Arbeit RD, et al. Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: a randomized, controlled trial of DAR-901[J]. PLoS One, 2017, 12(5): e0175215. doi: 10.1371/journal.pone.0175215
    [53]
    Bekker LG, Dintwe O, Fiore-Gartland A, et al. A phase 1b randomized study of the safety and immunological responses to vaccination with H4: IC31, H56: IC31, and BCG revaccination in Mycobacterium tuberculosis-uninfected adolescents in Cape Town, South Africa[J]. EClinicalMedicine, 2020, 21: 100313. doi: 10.1016/j.eclinm.2020.100313
    [54]
    Suliman S, Luabeya AKK, Geldenhuys H, et al. Dose optimization of H56: IC31 vaccine for tuberculosis-endemic populations. A double-blind, placebo-controlled, dose-selection trial[J]. American Journal of Respiratory and Critical Care Medicine, 2019, 199(2): 220 – 231. doi: 10.1164/rccm.201802-0366OC
    [55]
    Luabeya AKK, Kagina BMN, Tameris MD, et al. First-in-human trial of the post-exposure tuberculosis vaccine H56: IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults[J]. Vaccine, 2015, 33(33): 4130 – 4140. doi: 10.1016/j.vaccine.2015.06.051
    [56]
    Walker KB, Guo M, Guo Y, et al. Novel approaches to preclinical research and TB vaccine development[J]. Tuberculosis, 2016, 99 Suppl 1: S12 – S15.
    [57]
    Ginsberg AM, Ruhwald M, Mearns H, et al. TB vaccines in clinical development[J]. Tuberculosis, 2016, 99 Suppl 1: S16 – S20.
    [58]
    Tkachuk AP, Gushchin VA, Potapov V. D, et al Multi-subunit BCG booster vaccine GamTBvac: assessment of immunogenicity and protective efficacy in murine and guinea pig TB models[J]. PLoS One, 2017, 12(4): e0176784. doi: 10.1371/journal.pone.0176784
    [59]
    Vasina DV, Kleymenov DA, Manuylov VA, et al. First-in-human trials of GamTBvac, a recombinant subunit tuberculosis vaccine candidate: safety and immunogenicity assessment[J]. Vaccines, 2019, 7(4): 166. doi: 10.3390/vaccines7040166
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article views (196) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return