Advance Search
Turn off MathJax
Article Contents
SU Liu, DENG Sheng-liang, HE Wei-hua, . Application of aptamer-based hybridization chain reaction in detections[J]. Chinese Journal of Public Health. doi: 10.11847/zgggws1134506
Citation: SU Liu, DENG Sheng-liang, HE Wei-hua, . Application of aptamer-based hybridization chain reaction in detections[J]. Chinese Journal of Public Health. doi: 10.11847/zgggws1134506

Application of aptamer-based hybridization chain reaction in detections

doi: 10.11847/zgggws1134506
  • Received Date: 2021-03-02
    Available Online: 2021-12-30
  • Developing simple and sensitive detection methods is of great significance to researches on medical diagnosis, environmental analysis and food safety. As a new biological indicator molecule, aptamers are combined with hybridization chain reaction (HCR) to form a new detection model for sensitive detection of analytes. HCR is a typical amplification technology, which can be carried out without enzyme and self-assembled at room temperature. The aptamer-based HCR technology has be attracted great interest due to its high specificity and sensitivity, simple protocol and low cost. The study reviews basic features of HCR with an emphasis on the application of aptamer-based HCR in detection, such as proteins, enzyme activities, small molecules and tumor cells, etc. Major existing problems of the technology are also discussed. The review is aimed to provide a theoretical reference for establishing a highly efficient and sensitive HCR detection system.
  • loading
  • [1]
    Gopinath SCB. Methods developed for SELEX[J]. Analytical and Bioanalytical Chemistry, 2007, 387(1): 171 – 182.
    李晓佩, 杨良嵘, 黄昆, 等. 核酸适配体在生化分离及检测领域中的研究进展[J]. 化工学报, 2013, 64(1): 233 – 242. doi: 10.3969/j.issn.0438-1157.2013.01.025
    Lorenz TC. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies[J]. Journal of Visualized Experiments, 2012(63): 3998.
    Zhu X, Xu HF, Zheng HY, et al. An ultrasensitive aptameric sensor for proteins based on hyperbranched rolling circle amplification[J]. Chemical Communications, 2013, 49(86): 10115 – 10117. doi: 10.1039/c3cc45521a
    Li YB, Liu S, Zhao ZK, et al. Binding induced strand displacement amplification for homogeneous protein assay[J]. Talanta, 2017, 164: 196 – 200. doi: 10.1016/j.talanta.2016.11.047
    Bi S, Yue SZ, Zhang SS. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine[J]. Chemical Society Reviews, 2017, 46(14): 4281 – 4298. doi: 10.1039/C7CS00055C
    Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(43): 15275 – 15278. doi: 10.1073/pnas.0407024101
    Venkataraman S, Dirks RM, Rothemund PWK, et al. An autonomous polymerization motor powered by DNA hybridization[J]. Nature Nanotechnology, 2007, 2(8): 490 – 494. doi: 10.1038/nnano.2007.225
    Song WQ, Zhu KL, Cao ZJ, et al. Hybridization chain reaction - based aptameric system for the highly selective and sensitive detection of protein[J]. Analyst, 2012, 137(6): 1396 – 1401. doi: 10.1039/c2an16232f
    Wang XZ, Jiang AW, Hou T, et al. Enzyme - free and label - free fluorescence aptasensing strategy for highly sensitive detection of protein based on target - triggered hybridization chain reaction amplification[J]. Biosensors and Bioelectronics, 2015, 70: 324 – 329. doi: 10.1016/j.bios.2015.03.053
    Li ZB, Miao XM, Cheng ZY, et al. Hybridization chain reaction coupled with the fluorescence quenching of gold nanoparticles for sensitive cancer protein detection[J]. Sensors and Actuators B:Chemical, 2017, 243: 731 – 737. doi: 10.1016/j.snb.2016.12.047
    Nie YT, Yang MY, Ding YL. Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125[J]. Microchimica Acta, 2018, 185(7): 331. doi: 10.1007/s00604-018-2869-4
    Shi LL, Ba L, Xiong Y, et al. A hybridization chain reaction based assay for fluorometric determination of exosomes using magnetic nanoparticles and both aptamers and antibody as recognition elements[J]. Microchimica Acta, 2019, 186(12): 796. doi: 10.1007/s00604-019-3823-9
    Ma C, Liu HY, Tian T, et al. A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction[J]. Biosensors and Bioelectronics, 2016, 83: 15 – 18. doi: 10.1016/j.bios.2016.04.030
    Lu LS, Liu B, Leng JH, et al. Electrochemical mixed aptamer - antibody sandwich assay for mucin protein 16 detection through hybridization chain reaction amplification[J]. Analytical and Bioanalytical Chemistry, 2020, 412(26): 7169 – 7178. doi: 10.1007/s00216-020-02849-5
    Xu HF, Kou FX, Ye HZ, et al. Highly sensitive antibody - aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator[J]. Talanta, 2017, 175: 177 – 182. doi: 10.1016/j.talanta.2017.04.073
    Song WL, Xie XX, Sun WB, et al. Ultrasensitive electrochemical detection for thrombin using hybridization chain reaction with enzyme - amplification[J]. Analytica Chimica Acta, 2015, 860: 77 – 82. doi: 10.1016/j.aca.2014.12.029
    Jia LP, Zhao RN, Wang LJ, et al. Aptamer based electrochemical assay for protein kinase activity by coupling hybridization chain reaction[J]. Biosensors and Bioelectronics, 2018, 117: 690 – 695. doi: 10.1016/j.bios.2018.06.067
    Chen YX, Huang KJ, He LL, et al. Tetrahedral DNA probe coupling with hybridization chain reaction for competitive thrombin aptasensor[J]. Biosensors and Bioelectronics, 2018, 100: 274 – 281. doi: 10.1016/j.bios.2017.09.022
    Chang YY, Chai YQ, Xie SB, et al. Cleavage - based hybridization chain reaction for electrochemical detection of thrombin[J]. Analyst, 2014, 139(17): 4264 – 4269. doi: 10.1039/C4AN00712C
    曹亚, 康明扬, 陈红, 等. 基于杂交链式反应辅助多重信号放大的端粒酶灵敏检测[J]. 分析化学, 2017, 45(12): 1903 – 1908. doi: 10.11895/j.issn.0253-3820.171340
    Yao YY, Wang HX, Wang XZ, et al. Development of a chemiluminescent aptasensor for ultrasensitive and selective detection of aflatoxin B1 in peanut and milk[J]. Talanta, 2019, 201: 52 – 57. doi: 10.1016/j.talanta.2019.03.109
    Chen QG, Guo QQ, Chen Y, et al. An enzyme - free and label - free fluorescent biosensor for small molecules by G - quadruplex based hybridization chain reaction[J]. Talanta, 2015, 138: 15 – 19. doi: 10.1016/j.talanta.2015.02.002
    Bao T, Wen W, Zhang XH, et al. An exonuclease-assisted amplification electrochemical aptasensor for Hg2 + detection based on hybridization chain reaction[J]. Biosensors and Bioelectronics, 2015, 70: 318 – 323. doi: 10.1016/j.bios.2015.03.065
    黄玉坤, 陶璇, 邵坤, 等. 基于适配体杂交链式反应检测郫县豆瓣中黄曲霉毒素B1[J]. 食品科学, 2020, 41(22): 301 – 307. doi: 10.7506/spkx1002-6630-20190903-037
    Wang CK, Dong XY, Liu Q, et al. Label-free colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction[J]. Analytica Chimica Acta, 2015, 860: 83 – 88. doi: 10.1016/j.aca.2014.12.031
    Zeng RJ, Su LS, Luo ZB, et al. Ultrasensitive and label-free electrochemical aptasensor of kanamycin coupling with hybridization chain reaction and strand-displacement amplification[J]. Analytica Chimica Acta, 2018, 1038: 21 – 28. doi: 10.1016/j.aca.2018.07.010
    田润, 陶晴, 卞晓军, 等. 基于杂交链式反应的适配体传感器用于卡那霉素的比色检测[J]. 分析化学, 2020, 48(5): 608 – 614.
    Han T, Wang SZ, Sheng FF, et al. Target triggered ultrasensitive electrochemical polychlorinated biphenyl aptasensor based on DNA microcapsules and nonlinear hybridization chain reaction[J]. Analyst, 2020, 145(10): 3598 – 3604. doi: 10.1039/D0AN00065E
    Li S, Shang XX, Liu J, et al. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification[J]. Analytical Biochemistry, 2017, 528: 47 – 52. doi: 10.1016/j.ab.2017.04.013
    Feng CJ, Hou Z, Jiang W, et al. Binding induced colocalization activated hybridization chain reaction on the surface of magnetic nanobead for sensitive detection of adenosine[J]. Biosensors and Bioelectronics, 2016, 86: 966 – 970. doi: 10.1016/j.bios.2016.07.108
    Jia LP, Feng Z, Zhao RN, et al. Enzyme-free and triple-amplified electrochemical sensing of 8-hydroxy-2'-deoxyguanosine by three kinds of short pDNA-driven catalyzed hairpin assemblies followed by a hybridization chain reaction[J]. Analyst, 2020, 145(10): 3605 – 3611. doi: 10.1039/D0AN00233J
    Zhang Y, Chen ZW, Tao Y, et al. Hybridization chain reaction engineered dsDNA for Cu metallization: an enzyme-free platform for amplified detection of cancer cells and microRNAs[J]. Chemical Communications, 2015, 51(57): 11496 – 11499. doi: 10.1039/C5CC03144C
    Zhou GB, Lin MH, Song P, et al. Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification[J]. Analytical Chemistry, 2014, 86(15): 7843 – 7848. doi: 10.1021/ac502276w
    Yuan BY, Guo LY, Yin K, et al. Highly sensitive and specific detection of tumor cells based on a split aptamer-triggered dual hybridization chain reaction[J]. Analyst, 2020, 145(7): 2676 – 2681. doi: 10.1039/C9AN02476J
    Li L, Jiang HS, Meng XX, et al. Highly sensitive detection of cancer cells via split aptamer mediated proximity-induced hybridization chain reaction[J]. Talanta, 2021, 223: 121724. doi: 10.1016/j.talanta.2020.121724
    Tang JL, Lei YL, He XX, et al. Recognition-driven remodeling of dual-split aptamer triggering in situ hybridization chain reaction for activatable and autonomous identification of cancer cells[J]. Analytical Chemistry, 2020, 92(15): 10839 – 10846. doi: 10.1021/acs.analchem.0c02524
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article views (144) PDF downloads(24) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint