Citation: | SU Liu, DENG Sheng-liang, HE Wei-hua, . Application of aptamer-based hybridization chain reaction in detections[J]. Chinese Journal of Public Health. doi: 10.11847/zgggws1134506 |
[1] |
Gopinath SCB. Methods developed for SELEX[J]. Analytical and Bioanalytical Chemistry, 2007, 387(1): 171 – 182.
|
[2] |
李晓佩, 杨良嵘, 黄昆, 等. 核酸适配体在生化分离及检测领域中的研究进展[J]. 化工学报, 2013, 64(1): 233 – 242. doi: 10.3969/j.issn.0438-1157.2013.01.025
|
[3] |
Lorenz TC. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies[J]. Journal of Visualized Experiments, 2012(63): 3998.
|
[4] |
Zhu X, Xu HF, Zheng HY, et al. An ultrasensitive aptameric sensor for proteins based on hyperbranched rolling circle amplification[J]. Chemical Communications, 2013, 49(86): 10115 – 10117. doi: 10.1039/c3cc45521a
|
[5] |
Li YB, Liu S, Zhao ZK, et al. Binding induced strand displacement amplification for homogeneous protein assay[J]. Talanta, 2017, 164: 196 – 200. doi: 10.1016/j.talanta.2016.11.047
|
[6] |
Bi S, Yue SZ, Zhang SS. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine[J]. Chemical Society Reviews, 2017, 46(14): 4281 – 4298. doi: 10.1039/C7CS00055C
|
[7] |
Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(43): 15275 – 15278. doi: 10.1073/pnas.0407024101
|
[8] |
Venkataraman S, Dirks RM, Rothemund PWK, et al. An autonomous polymerization motor powered by DNA hybridization[J]. Nature Nanotechnology, 2007, 2(8): 490 – 494. doi: 10.1038/nnano.2007.225
|
[9] |
Song WQ, Zhu KL, Cao ZJ, et al. Hybridization chain reaction - based aptameric system for the highly selective and sensitive detection of protein[J]. Analyst, 2012, 137(6): 1396 – 1401. doi: 10.1039/c2an16232f
|
[10] |
Wang XZ, Jiang AW, Hou T, et al. Enzyme - free and label - free fluorescence aptasensing strategy for highly sensitive detection of protein based on target - triggered hybridization chain reaction amplification[J]. Biosensors and Bioelectronics, 2015, 70: 324 – 329. doi: 10.1016/j.bios.2015.03.053
|
[11] |
Li ZB, Miao XM, Cheng ZY, et al. Hybridization chain reaction coupled with the fluorescence quenching of gold nanoparticles for sensitive cancer protein detection[J]. Sensors and Actuators B:Chemical, 2017, 243: 731 – 737. doi: 10.1016/j.snb.2016.12.047
|
[12] |
Nie YT, Yang MY, Ding YL. Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125[J]. Microchimica Acta, 2018, 185(7): 331. doi: 10.1007/s00604-018-2869-4
|
[13] |
Shi LL, Ba L, Xiong Y, et al. A hybridization chain reaction based assay for fluorometric determination of exosomes using magnetic nanoparticles and both aptamers and antibody as recognition elements[J]. Microchimica Acta, 2019, 186(12): 796. doi: 10.1007/s00604-019-3823-9
|
[14] |
Ma C, Liu HY, Tian T, et al. A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction[J]. Biosensors and Bioelectronics, 2016, 83: 15 – 18. doi: 10.1016/j.bios.2016.04.030
|
[15] |
Lu LS, Liu B, Leng JH, et al. Electrochemical mixed aptamer - antibody sandwich assay for mucin protein 16 detection through hybridization chain reaction amplification[J]. Analytical and Bioanalytical Chemistry, 2020, 412(26): 7169 – 7178. doi: 10.1007/s00216-020-02849-5
|
[16] |
Xu HF, Kou FX, Ye HZ, et al. Highly sensitive antibody - aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator[J]. Talanta, 2017, 175: 177 – 182. doi: 10.1016/j.talanta.2017.04.073
|
[17] |
Song WL, Xie XX, Sun WB, et al. Ultrasensitive electrochemical detection for thrombin using hybridization chain reaction with enzyme - amplification[J]. Analytica Chimica Acta, 2015, 860: 77 – 82. doi: 10.1016/j.aca.2014.12.029
|
[18] |
Jia LP, Zhao RN, Wang LJ, et al. Aptamer based electrochemical assay for protein kinase activity by coupling hybridization chain reaction[J]. Biosensors and Bioelectronics, 2018, 117: 690 – 695. doi: 10.1016/j.bios.2018.06.067
|
[19] |
Chen YX, Huang KJ, He LL, et al. Tetrahedral DNA probe coupling with hybridization chain reaction for competitive thrombin aptasensor[J]. Biosensors and Bioelectronics, 2018, 100: 274 – 281. doi: 10.1016/j.bios.2017.09.022
|
[20] |
Chang YY, Chai YQ, Xie SB, et al. Cleavage - based hybridization chain reaction for electrochemical detection of thrombin[J]. Analyst, 2014, 139(17): 4264 – 4269. doi: 10.1039/C4AN00712C
|
[21] |
曹亚, 康明扬, 陈红, 等. 基于杂交链式反应辅助多重信号放大的端粒酶灵敏检测[J]. 分析化学, 2017, 45(12): 1903 – 1908. doi: 10.11895/j.issn.0253-3820.171340
|
[22] |
Yao YY, Wang HX, Wang XZ, et al. Development of a chemiluminescent aptasensor for ultrasensitive and selective detection of aflatoxin B1 in peanut and milk[J]. Talanta, 2019, 201: 52 – 57. doi: 10.1016/j.talanta.2019.03.109
|
[23] |
Chen QG, Guo QQ, Chen Y, et al. An enzyme - free and label - free fluorescent biosensor for small molecules by G - quadruplex based hybridization chain reaction[J]. Talanta, 2015, 138: 15 – 19. doi: 10.1016/j.talanta.2015.02.002
|
[24] |
Bao T, Wen W, Zhang XH, et al. An exonuclease-assisted amplification electrochemical aptasensor for Hg2 + detection based on hybridization chain reaction[J]. Biosensors and Bioelectronics, 2015, 70: 318 – 323. doi: 10.1016/j.bios.2015.03.065
|
[25] |
黄玉坤, 陶璇, 邵坤, 等. 基于适配体杂交链式反应检测郫县豆瓣中黄曲霉毒素B1[J]. 食品科学, 2020, 41(22): 301 – 307. doi: 10.7506/spkx1002-6630-20190903-037
|
[26] |
Wang CK, Dong XY, Liu Q, et al. Label-free colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction[J]. Analytica Chimica Acta, 2015, 860: 83 – 88. doi: 10.1016/j.aca.2014.12.031
|
[27] |
Zeng RJ, Su LS, Luo ZB, et al. Ultrasensitive and label-free electrochemical aptasensor of kanamycin coupling with hybridization chain reaction and strand-displacement amplification[J]. Analytica Chimica Acta, 2018, 1038: 21 – 28. doi: 10.1016/j.aca.2018.07.010
|
[28] |
田润, 陶晴, 卞晓军, 等. 基于杂交链式反应的适配体传感器用于卡那霉素的比色检测[J]. 分析化学, 2020, 48(5): 608 – 614.
|
[29] |
Han T, Wang SZ, Sheng FF, et al. Target triggered ultrasensitive electrochemical polychlorinated biphenyl aptasensor based on DNA microcapsules and nonlinear hybridization chain reaction[J]. Analyst, 2020, 145(10): 3598 – 3604. doi: 10.1039/D0AN00065E
|
[30] |
Li S, Shang XX, Liu J, et al. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification[J]. Analytical Biochemistry, 2017, 528: 47 – 52. doi: 10.1016/j.ab.2017.04.013
|
[31] |
Feng CJ, Hou Z, Jiang W, et al. Binding induced colocalization activated hybridization chain reaction on the surface of magnetic nanobead for sensitive detection of adenosine[J]. Biosensors and Bioelectronics, 2016, 86: 966 – 970. doi: 10.1016/j.bios.2016.07.108
|
[32] |
Jia LP, Feng Z, Zhao RN, et al. Enzyme-free and triple-amplified electrochemical sensing of 8-hydroxy-2'-deoxyguanosine by three kinds of short pDNA-driven catalyzed hairpin assemblies followed by a hybridization chain reaction[J]. Analyst, 2020, 145(10): 3605 – 3611. doi: 10.1039/D0AN00233J
|
[33] |
Zhang Y, Chen ZW, Tao Y, et al. Hybridization chain reaction engineered dsDNA for Cu metallization: an enzyme-free platform for amplified detection of cancer cells and microRNAs[J]. Chemical Communications, 2015, 51(57): 11496 – 11499. doi: 10.1039/C5CC03144C
|
[34] |
Zhou GB, Lin MH, Song P, et al. Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification[J]. Analytical Chemistry, 2014, 86(15): 7843 – 7848. doi: 10.1021/ac502276w
|
[35] |
Yuan BY, Guo LY, Yin K, et al. Highly sensitive and specific detection of tumor cells based on a split aptamer-triggered dual hybridization chain reaction[J]. Analyst, 2020, 145(7): 2676 – 2681. doi: 10.1039/C9AN02476J
|
[36] |
Li L, Jiang HS, Meng XX, et al. Highly sensitive detection of cancer cells via split aptamer mediated proximity-induced hybridization chain reaction[J]. Talanta, 2021, 223: 121724. doi: 10.1016/j.talanta.2020.121724
|
[37] |
Tang JL, Lei YL, He XX, et al. Recognition-driven remodeling of dual-split aptamer triggering in situ hybridization chain reaction for activatable and autonomous identification of cancer cells[J]. Analytical Chemistry, 2020, 92(15): 10839 – 10846. doi: 10.1021/acs.analchem.0c02524
|