高级检索

江苏省淮安市气温与流感样病例发病关系时间序列分析

Time series analysis of the association between temperature and incidence of influenza-like illness among residents in Huai′an city, Jiangsu province

  • 摘要:
    目的 了解江苏省淮安市气温与流感样病例(ILI)发病的关系,为当地ILI防控工作提供科学依据。
    方法 收集中国流感信息监测系统中淮安市2家国家级流感监测哨点医院2015年1月1日—2022年12月31日ILI发病监测数据以及同期国家气象科学数据中心淮安市周气象因素数据,采用Spearman相关分析法分析ILI发病与气象因素之间的相关性,应用分布滞后非线性模型(DLNM)分析平均气温与淮安市居民ILI发病的关系,同时控制长期趋势、节假日效应等混杂因素,分析平均气温对ILI发病的滞后效应。
    结果 淮安市流感监测哨点医院2015—2022年周平均发病数为(527.88±444.83)例,Spearman相关性分析结果显示,周平均气温与ILI周平均发病呈负相关(r=–0.24,P<0.001)周平均气压均与ILI周平均发病数呈正相关(r=0.19,P<0.001)。DLNM模型分析结果显示,滞后0周时,热效应(30 ℃)会增加淮安市5~14岁(RR=2.02,95%CI=1.03~3.98)、15~24岁(RR=2.25,95%CI=1.17~4.32)、25~59岁(RR=2.08,95%CI=1.13~3.83)和≥60岁(RR=3.01,95%CI=1.04~8.74)人群的ILI发病风险;滞后1周时,冷效应(1 ℃)会增加淮安市总体(RR=1.96,95%CI=1.35~2.84)、0~4岁(RR=1.39,95%CI=1.00~1.94)、5~14岁(RR=1.70,95%CI=1.04~2.89)、15~24岁(RR=3.88,95%CI=2.30~6.57)、25~59岁(RR=4.02,95%CI=2.46~6.57)和≥60岁(RR=13.02,95%CI=5.97~28.42)人群的ILI发病风险;滞后2周时,冷效应(1 ℃)会增加淮安市25~59岁人群的ILI发病风险(RR=1.58,95%CI=1.01~2.48);滞后0~1周时,冷效应(1 ℃)会增加淮安市总体(RR=2.51,95%CI=1.83~3.46)、0~4岁(RR=1.61,95%CI=1.20~2.14)、5~14岁(RR=2.50,95%CI=1.55~3.77)、15~24岁(RR=5.01,95%CI=3.19~7.87)、25~59岁(RR=5.25,95%CI=3.45~8.00)和≥60岁(RR=17.13,95%CI=8.89~32.90)人群的ILI发病风险,热效应(30 ℃)会增加淮安市≥60岁人群的ILI发病风险(RR=4.68,95%CI=1.46~15.01);滞后0~2周时,冷效应(1 ℃)会增加淮安市总体(RR=3.21,95%CI=2.34~4.40)、0~4岁(RR=1.96,95%CI=1.47~2.62)、5~14岁(RR=3.07,95%CI=2.02~4.67)、15~24岁(RR=5.86,95%CI=3.76~9.11)、25~59岁(RR=8.32,95%CI=5.60~12.46)和≥60岁(RR=15.87,95%CI=8.12~31.03)人群的ILI发病风险,热效应(30 ℃)会增加淮安市15~24岁人群的ILI发病风险(RR=2.18,95%CI=1.08~4.38);滞后0~3周时,冷效应(1 ℃)会增加淮安市总体(RR=2.10,95%CI=1.54~2.88)、0~4岁(RR=1.909,5%CI=1.44~2.51)、5~14岁(RR=2.16,95%CI=1.43~2.37)、15~24岁(RR=2.42,95%CI=1.51~3.86)、25~59岁(RR=3.43,95%CI=2.45~5.25)和≥60岁(RR=6.18,95%CI=3.07~12.44)人群的ILI发病风险。
    结论 气温对淮安市不同年龄人群ILI发病均有影响,低温冷效应是主要的危险因素且存在滞后效应,尤其对老年居民ILI发病的影响较大,应在今后ILI的防控工作中重点关注。

     

    Abstract:
    Objective To explore the association between temperature and incidence of influenza-like illness (ILI) in Huai′an city, Jiangsu province and provide a scientific basis for the prevention and control of ILI.
    Methods The ILI surveillance data of two national influenza surveillance sentinel hospitals and meteorological data in Huai′an from January 1, 2015 to December 31, 2022 were collected from the Chinese Influenza Surveillance Information System and China Meteorological Data Service Center, respectively. The associations between the weekly incidence of ILI and meteorological factors were tested by Spearman correlation analysis. The distributed lag non-linear model (DLNM) was utilized to analyze the association between the average temperature and ILI incidence among residents in Huai′an. The confounding factors such as long-term trends and holiday effects were controlled to analyze the lag effect of average temperature on the incidence of ILI.
    Results In the influenza surveillance sentinel hospitals in Huai′an from 2015 to 2022, the weekly average incidence of ILI was (527.88 ± 444.83) cases. Spearman correlation analysis indicated that weekly average temperature and weekly average air pressure were negatively associated with weekly average incidence (r = −0.24 and 0.19, respectively, both P < 0.001). The results of the DLNM demonstrated that at a lag of 0 week, the heat effect (30 °C) would increase the risk of ILI in the 5–14 (RR = 2.02, 95%CI: 1.03–3.98), 15–24 (RR = 2.25, 95%CI: 1.17–4.32), 25–59 (RR = 2.08, 95%CI: 1.13–3.83), and ≥ 60 (RR = 3.01, 95%CI: 1.04–8.74) age groups; at a lag of 1 week, the cold effect (1 °C) would increase the risk of ILI in the overall population (RR = 1.96, 95%CI: 1.35–2.84), 0–4 (RR = 1.39, 95%CI: 1.00–1.94), 5–14 (RR = 1.70, 95%CI: 1.04–2.89), 15–24 (RR = 3.88, 95%CI: 2.30–6.57), 25–59 (RR = 4.02, 95%CI: 2.46–6.57), and ≥60 (RR = 13.02, 95%CI: 5.97–28.42) age groups; at a lag of 2 weeks, the cold effect (1 °C) would increase the risk of ILI in the 25–59 age group (RR = 1.58, 95%CI: 1.01–2.48); at a lag of 0–1 week, the cold effect (1 °C) would increase the risk of ILI in the overall population (RR = 2.51, 95%CI: 1.83–3.46), 0–4 (RR = 1.61, 95%CI: 1.20–2.14), 5–14 (RR = 2.50, 95%CI: 1.55–3.77), 15–24 (RR = 5.01, 95%CI: 3.19–7.87), 25–59 (RR = 5.25, 95%CI: 3.45–8.00), and ≥ 60 (RR = 17.13, 95%CI: 8.89–32.90) age groups, and the heat effect (30 °C) would increase the risk of ILI in the ≥ 60 age group (RR = 4.68, 95%CI: 1.46–15.01); at a lag of 0–2 weeks, the cold effect (1 °C) would increase the risk of ILI in the overall population (RR = 3.21, 95%CI: 2.34–4.40), 0–4 (RR = 1.96, 95%CI: 1.47–2.62), 5–14 (RR = 3.07, 95%CI: 2.02–4.67), 15–24 (RR = 5.86, 95%CI: 3.76–9.11), 25–59 (RR = 8.32, 95%CI: 5.60–12.46), and ≥ 60 (RR = 15.87, 95%CI: 8.12–31.03) age groups, and the heat effect (30 °C) would increase the risk of ILI in the 15–24 age group (RR = 2.18, 95%CI: 1.08–4.38); at a lag of 0–3 weeks, the cold effect (1 °C) would increase the risk of ILI in the overall population (RR = 2.10, 95%CI: 1.54–2.88), 0–4 (RR = 1.90, 95%CI: 1.44–2.51), 5–14 (RR = 2.16, 95%CI: 1.43–2.37), 15–24 (RR = 2.42, 95%CI: 1.51–3.86), 25–59 (RR = 3.43, 95%CI: 2.45–5.25), and ≥ 60 (RR = 6.18, 95%CI: 3.07–12.44) age groups.
    Conclusions Temperature affects the risk of ILI in different age groups in Huai′an. The cold effect is the main risk factor and has a lag effect, demonstrating a greater effect on ILI in the elderly population, which suggests that more attention should be paid to the elderly in the future.

     

/

返回文章
返回