高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相芯片技术在感染性腹泻病原体检测中应用

曹军 管红霞

曹军, 管红霞. 液相芯片技术在感染性腹泻病原体检测中应用[J]. 中国公共卫生, 2022, 38(7): 939-943. doi: 10.11847/zgggws1133735
引用本文: 曹军, 管红霞. 液相芯片技术在感染性腹泻病原体检测中应用[J]. 中国公共卫生, 2022, 38(7): 939-943. doi: 10.11847/zgggws1133735
CAO Jun, GUAN Hong-xia. Application of liquid-phase chip technology in infectious diarrhea pathogen detection[J]. Chinese Journal of Public Health, 2022, 38(7): 939-943. doi: 10.11847/zgggws1133735
Citation: CAO Jun, GUAN Hong-xia. Application of liquid-phase chip technology in infectious diarrhea pathogen detection[J]. Chinese Journal of Public Health, 2022, 38(7): 939-943. doi: 10.11847/zgggws1133735

液相芯片技术在感染性腹泻病原体检测中应用

doi: 10.11847/zgggws1133735
基金项目: 无锡市卫健委项目(T202017);无锡市科技局项目(锡科社[2020]259号 – 24)
详细信息
    作者简介:

    曹军(1976 – ),男,江苏无锡人,副主任技师,本科,研究方向:传染病病原监测

    通讯作者:

    管红霞,E-mail:ghx-331@163.com

  • 中图分类号: R 115

Application of liquid-phase chip technology in infectious diarrhea pathogen detection

  • 摘要:   目的  评价液相芯片技术检测感染性腹泻病原体的应用价值。  方法  于2015年4月 — 2016年4月收集江苏省无锡市人民医院(含儿童医院)肠道门诊就诊的179份腹泻病例粪便标本,采用美国Luminex公司胃肠道病原体检测试剂盒(xTAG GPP)进行检测,并与real-time PCR检测结果进行比较。  结果  xTAG GPP检出9种病原体82例,阳性检出率为45.81 %(82/179),real-time PCR检出9种病原体81例,阳性检出率为45.25 %(81/179),两种检测方法总符合率92.17 %(165/179)。xTAG GPP检测腹泻病原体灵敏度为84.44 %,特异度为93.33 %,阳性预测值为92.68 %,阴性预测值为85.71 %。  结论  与传统的检测方法相比,液相芯片技术检测通量高、速度快,对常见腹泻病原体具有较高的敏感性和特异性,可用于腹泻病的快速诊断。
  • 表  1  xTAG GPP和real-time PCR检测病原及目标基因

    xTAG GPP目标基因
    病原中文名称病原英文名称real-time PCRTPT real-time PCR
    腺病毒40/41型 Adenovirus 40/41 hexon(内部使用) hexon [3-4]
    诺如病毒GI/GII Norovirus GI/GII ORF1-ORF2 junction(内部使用) RDRP of GI [5]; RDRP and ORF1-ORF2 junction of GII a[6-7]
    A组轮状病毒 Rotavirus A NSP3(内部使用) VP6 [7]
    弯曲菌 Campylobacter C. jejuni hipO; C. coli glyA(内部使用) glyA of C. jejuni and C. coli [8],cadF [9]
    艰难梭菌(毒素A/B型) C. difficile toxin A/B tcdA,tcdB(内部使用) tcdA,tcdB [10-12]
    肠出血性大肠埃希菌O157 E. coli O157
    肠产毒性大肠埃希菌LT/ST型 ETEC LT/ST elt,estA(STh),estB(STp)(内部使用) elt,estA(STh),estB(STp)[13]
    产志贺毒素大肠埃希菌stx1/stx2 STEC stx1/stx2 stx1,stx2(内部使用) stx1,stx2 [13]
    肠侵袭性大肠埃希菌/志贺菌 EIEC/Shigella ipaH(内部使用) virA [14]
    沙门菌 Salmonella ttrRSBCA(内部使用),培养法 ompC [15]
    霍乱弧菌 V. cholerae ompW(内部使用) epsM [16]
    小肠结肠炎耶尔森氏菌 Y. enterocolitica ystA(内部使用) ail [17]
    隐孢子虫 Cryptosporidium 18S rRNA gene(内部使用) 18S rRNA gene [18-19]
    痢疾阿米巴 E. histolytica SSU rRNA gene(内部使用) SSU rRNA gene [20-21]
    蓝氏贾第鞭毛虫 G. lamblia SSU RNA gene(内部使用) hsp [18]
      注:a 使用两对引物对诺如病毒GII进行不一致分析,任何一对引物为阳性,则判定标本为阳性。
    下载: 导出CSV

    表  2  不同方法病原体的检测结果

    病原体培养法xTAG GPPreal-time PCR总阳性数 a总阳性率(%)
    阳性数阳性数阳性率(%)阳性数阳性率(%)
    诺如病毒GI/GII型(Norovirus GI/GII) 25 13.97 25 13.97 25 13.97
    A组轮状病毒(Rotavirus A) 23 12.85 23 12.85 24 12.85
    腺病毒40/41型(Adenovirus 40/41) 3 1.68 4 2.23 4 2.23
    沙门菌(Salmonella 17 5 2.79 8 4.47 17 9.50
    弯曲菌(Campylobacter 9 5.03 10 5.59 10 5.59
    肠产毒性大肠埃希菌(ETEC) 2 1.12 2 1.12 2 1.12
    艰难梭菌(毒素A/B)(C. difficile toxin A/B 4 2.23 4 2.23 4 2.23
    志贺菌(Shigella 8 4.47 6 3.35 6 3.35
    霍乱弧菌(V. cholerae 2 1.12 2 1.12 2 1.12
    合计 b 17 82 45.81 81 45.25 90 50.28
      注:a 阳性数为培养法、xTAG GPP和real-time PCR检测为阳性标本的总和;b 因部分标本同时感染两种或多种病原体,不计算此类靶标在标本中的阳性检出率。
    下载: 导出CSV

    表  3  xTAG GPP和real-time PCR检测不同病原体检测的灵敏度和特异度

    病原体金标准axTAG GPP灵敏度(%)特异度(%)阳性预测值(%)阴性预测值(%)real-time PCR灵敏度(%)特异度(%)阳性预测值(%)阴性预测值(%)
    PNPN
    Norovirus GI P 6 0 100.00 100.00 100.00 100.00 6 0 100.00 100.00 100.00 100.00
    N 0 173 0 173
    Norovirus GII P 20 0 100.00 99.37 95.24 100.00 21 0 100.00 100.00 100.00 100.00
    N 1 158 0 158
    Rotavirus A P 23 0 100.00 100.00 100.00 100.00 23 0 100.00 100.00 100.00 100.00
    N 0 156 0 156
    Adenovirus 40/41 P 3 1 75.00 100.00 100.00 99.43 4 0 100.00 100.00 100.00 100.00
    N 0 175 0 175
    Salmonella P 5 12 29.41 100.00 100.00 93.10 8 9 47.06 100.00 100.00 94.74
    N 0 162 0 162
    Campylobacter P 9 1 90.00 100.00 100.00 99.41 10 0 100.00 100.00 100.00 100.00
    N 0 169 0 169
    ETEC(LT) P 1 0 100.00 100.00 100.00 100.00 1 0 100.00 100.00 100.00 100.00
    N 0 178 0 178
    ETEC(ST) P 1 0 100.00 100.00 100.00 100.00 1 0 100.00 100.00 100.00 100.00
    N 0 178 0 178
    C. difficile toxin A/B P 4 0 100.00 100.00 100.00 100.00 4 0 100.00 100.00 100.00 100.00
    N 0 175 0 175
    Shigella P 6 0 100.00 98.84 75.00 100.00 6 0 100.00 100.00 100.00 100.00
    N 2 171 0 173
    V. cholerae P 2 0 100.00 100.00 100.00 100.00 2 0 100.00 100.00 100.00 100.00
    N 0 177 0 177
    合计 P 76 14 84.44 93.33 92.68 85.71 81 9 90.00 100.00 100.00 90.82
    N 6 84 0 89
      注:a 金标准为按照本研究方法中阳性的判定原则得到的最终结果;P为阳性;N为阴性。
    下载: 导出CSV
  • [1] Zhou MG, Wang HD, Zhu J, et al. Cause - specific mortality for 240 causes in China during 1990 – 2013: a systematic subnational analysis for the global burden of disease study 2013[J]. The Lancet, 2016, 387(10015): 251 – 272. doi: 10.1016/S0140-6736(15)00551-6
    [2] 汉聪慧, 曹广进, 张福真, 等. 液相芯片技术与实时荧光定量PCR在检测儿童感染性腹泻病原体的比较[J]. 基础医学与临床, 2020, 40(4): 523 – 527. doi: 10.3969/j.issn.1001-6325.2020.04.018
    [3] Higgins RR, Beniprashad M, Cardona M, et al. Evaluation and verification of the Seeplex Diarrhea-V ACE assay for simultaneous detection of adenovirus, rotavirus, and norovirus genogroups I and II in clinical stool specimens[J]. Journal of Clinical Microbiology, 2011, 49(9): 3154 – 3162. doi: 10.1128/JCM.00599-11
    [4] Damen M, Minnaar R, Glasius P, et al. Real - time PCR with an internal control for detection of all known human adenovirus serotypes[J]. Journal of Clinical Microbiology, 2008, 46(12): 3997 – 4003. doi: 10.1128/JCM.00563-08
    [5] Liu Y, Xu ZQ, Zhang Q, et al. Simultaneous detection of seven enteric viruses associated with acute gastroenteritis by a multiplexed Luminex - based assay[J]. Journal of Clinical Microbiology, 2012, 50(7): 2384 – 2389. doi: 10.1128/JCM.06790-11
    [6] Ishida S, Yoshizumi S, Ikeda T, et al. Sensitive and rapid detection of norovirus using duplex TaqMan reverse transcription - polymerase chain reaction[J]. Journal of Medical Virology, 2008, 80(5): 913 – 920. doi: 10.1002/jmv.21142
    [7] Wang J, Xu ZQ, Niu PH, et al. A two - tube multiplex reverse transcription PCR assay for simultaneous detection of viral and bacterial pathogens of infectious diarrhea[J]. BioMed Research International, 2014, 2014: 648520.
    [8] Jensen AN, Andersen MT, Dalsgaard A, et al. Development of real - time PCR and hybridization methods for detection and identification of thermophilic Campylobacter spp. in pig faecal samples[J]. Journal of Applied Microbiology, 2005, 99(2): 292 – 300. doi: 10.1111/j.1365-2672.2005.02616.x
    [9] Nayak R, Stewart TM, Nawaz MS. PCR identification of Campylobacter coli and Campylobacter jejuni by partial sequencing of virulence genes[J]. Molecular and Cellular Probes, 2005, 19(3): 187 – 193. doi: 10.1016/j.mcp.2004.11.005
    [10] Kubota H, Sakai T, Gawad A, et al. Development of TaqMan - based quantitative PCR for sensitive and selective detection of toxigenic Clostridium difficile in human stools[J]. PLoS One, 2014, 9(10): e111684. doi: 10.1371/journal.pone.0111684
    [11] Liu J, Gratz J, Amour C, et al. A laboratory - developed TaqMan Array Card for simultaneous detection of 19 enteropathogens[J]. Journal of Clinical Microbiology, 2013, 51(2): 472 – 480. doi: 10.1128/JCM.02658-12
    [12] Houser BA, Hattel AL, Jayarao BM. Real - time multiplex polymerase chain reaction assay for rapid detection of Clostridium difficile toxin - encoding strains[J]. Foodborne Pathogens and Disease, 2010, 7(6): 719 – 726. doi: 10.1089/fpd.2009.0483
    [13] Hidaka A, Hokyo T, Arikawa K, et al. Multiplex real - time PCR for exhaustive detection of diarrhoeagenic Escherichia coli[J]. Journal of Applied Microbiology, 2009, 106(2): 410 – 420. doi: 10.1111/j.1365-2672.2008.04043.x
    [14] Villalobo E, Torres A. PCR for detection of Shigella spp. in mayonnaise[J]. Applied and Environmental Microbiology, 1998, 64(4): 1242 – 1245. doi: 10.1128/AEM.64.4.1242-1245.1998
    [15] Kwang J, Littledike ET, Keen JE. Use of the polymerase chain reaction for Salmonella detection[J]. Letters in Applied Microbiology, 1996, 22(1): 46 – 51. doi: 10.1111/j.1472-765X.1996.tb01106.x
    [16] Gugliandolo C, Lentini V, Spanò A, et al. Conventional and molecular methods to detect bacterial pathogens in mussels[J]. Letters in Applied Microbiology, 2011, 52(1): 15 – 21. doi: 10.1111/j.1472-765X.2010.02959.x
    [17] Thoerner P, Bin Kingombe CI, Bögli-Stuber K, et al. PCR detection of virulence genes in Yersinia enterocolitica and Yersinia pseudotuberculosis and investigation of virulence gene distribution[J]. Applied and Environmental Microbiology, 2003, 69(3): 1810 – 1816. doi: 10.1128/AEM.69.3.1810-1816.2003
    [18] Rochelle PA, De Leon R, Stewart MH, et al. Comparison of primers and optimization of PCR conditions for detection of Cryptosporidium parvum and Giardia lamblia in water[J]. Applied and Environmental Microbiology, 1997, 63(1): 106 – 114. doi: 10.1128/aem.63.1.106-114.1997
    [19] Awad-el-Kariem FM, Warhurst DC, McDonald V. Detection and species identification of Cryptosporidium oocysts using a system based on PCR and endonuclease restriction[J]. Parasitology, 1994, 109(Pt 1): 19 – 22.
    [20] Haque R, Roy S, Siddique A, et al. Multiplex real - time PCR assay for detection of Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium spp[J]. The American Journal of Tropical Medicine and Hygiene, 2007, 76(4): 713 – 717. doi: 10.4269/ajtmh.2007.76.713
    [21] Roy S, Kabir M, Mondal D, et al. Real - time - PCR assay for diagnosis of Entamoeba histolytica infection[J]. Journal of Clinical Microbiology, 2005, 43(5): 2168 – 2172. doi: 10.1128/JCM.43.5.2168-2172.2005
    [22] 黎俊宏, 姚萍, 李琼, 等. 多重PCR液相芯片技术在腹泻病原体检测中的应用[J]. 现代预防医学, 2017, 44(18): 3390 – 3394.
    [23] Gosert R, Heininger U, Hirsch HH. Enterovirus detection in patients with acute gastroenteritis in Switzerland[J]. Journal of Medical Virology, 2018, 90(4): 685 – 691. doi: 10.1002/jmv.25005
    [24] Deng JK, Luo X, Wang RL, et al. A comparison of luminex xTAG® gastrointestinal pathogen panel (xTAG GPP) and routine tests for the detection of enteropathogens circulating in Southern China[J]. Diagnostic Microbiology and Infectious Disease, 2015, 83(3): 325 – 330. doi: 10.1016/j.diagmicrobio.2015.07.024
    [25] Vocale C, Rimoldi SG, Pagani C, et al. Comparative evaluation of the new xTAG GPP multiplex assay in the laboratory diagnosis of acute gastroenteritis. Clinical assessment and potential application from a multicentre Italian study[J]. International Journal of Infectious Diseases, 2015, 34: 33 – 37. doi: 10.1016/j.ijid.2015.02.011
    [26] Huang SH, Lin YF, Tsai MH, et al. Detection of common diarrhea - causing pathogens in Northern Taiwan by multiplex polymerase chain reaction[J]. Medicine, 2018, 97(23): e11006. doi: 10.1097/MD.0000000000011006
    [27] 赵新, 兰青阔, 陈锐, 等. 应用微滴数字PCR技术快速检测食用菌中沙门氏菌[J]. 食品与生物技术学报, 2017, 36(3): 315 – 321. doi: 10.3969/j.issn.1673-1689.2017.03.014
    [28] Chhabra P, Gregoricus N, Weinberg GA, et al. Comparison of three multiplex gastrointestinal platforms for the detection of gastroenteritis viruses[J]. Journal of Clinical Virology, 2017, 95: 66 – 71. doi: 10.1016/j.jcv.2017.08.012
    [29] Zhuo R, Cho J, Qiu YY, et al. High genetic variability of norovirus leads to diagnostic test challenges[J]. Journal of Clinical Virology, 2017, 96: 94 – 98. doi: 10.1016/j.jcv.2017.10.003
  • 加载中
表(3)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  162
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 接收日期:  2020-12-29
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2022-07-01

目录

    /

    返回文章
    返回