Temporospatial distribution of particles released by printer and influence of ventilation: an experimental study
-
摘要:
目的 探究打印机释放颗粒物浓度的时空分布及通风因素的影响。 方法 在体积为0.606 m3(1.035 m × 0.711 m × 0.823 m)实验仓中进行实验,使用气溶胶粒径谱仪监测实验仓内不同位置的颗粒物浓度随打印机工作时间的变化;探究通风时机、通风流量和通风时长对颗粒物浓度的影响。 结果 实验仓内不同位置的颗粒物数量浓度达到峰值的时间无差异;颗粒物浓度峰值随高度升高而降低 (rs = – 0.740,P < 0.001),且随水平距离增加而衰减(rs = – 0.351,P < 0.01)。在打印前、打印开始、打印结束后通风和不通风时颗粒物浓度峰值分别为(– 26.96 ± 8.42)、(– 5.67 ± 4.72)、(39.23 ± 16.85)和(75.43 ± 15.37) p/cm3,有统计学差异(P < 0.05)。在打印开始时通风,颗粒物数量浓度峰值随通风流量增加和通风时间延长而显著下降。 结论 打印机释放颗粒物在实验仓内扩散迅速,浓度峰值呈现垂直分布和距离衰减;通风时机、通风流量和通风时长可影响浓度水平。 Abstract:Objective To explore temporospatial distribution of particulate matter (PM) released by printer and the influence of ventilation factors on the distribution. Methods An experimental chamber with a sized of 0.606 cubic meter (1.035 × 0.711 × 0.823) was fabricated for the study. The concentration of PM released by a printer at different times and locations was measured with a aerosol particle spectrometer. A ventilator was utilized to evaluate the influence of ventilation timing, flow rate and duration on the concentration of PM released by the printer. Results No significant difference was observed in the time of PM concentration reaching to the peak value at different positions in the experimental chamber (P > 0.05). The peak value of PM concentration decreased with the increase in the height of detection position (rs = – 0.740, P < 0.001) and horizontal distance between the printer and detection point (rs = – 0.351, P < 0.01). In terms of ventilation, the peak value of PM concentration (number of particulates/per cubic centimeter) was – 26.96 ± 8.42 for the ventilation before printing, – 5.67 ± 4.72 for the ventilation at the beginning of printing, 39.23 ± 16.85 for the ventilation at the end of printing, and 75.43 ± 15.37 for without ventilation, respectively, with a significant difference among the peak values (P < 0.05). The peak value of PM concentration decreased with the increase in ventilation flow rate and duration. Conclusion The particles released by printer spread rapidly in the experimental chamber and the number of released particulate matter presents an obvious vertical distribution and a horizontal distance attenuation. Ventilation timing, flow rate, and duration can affect the concentration of released particulate matter. -
Key words:
- printer /
- particulate matter /
- temporospatial distribution /
- ventilation /
- influencing factor
-
表 1 不同测量点处的颗粒物数量浓度峰值及出现时间[M(P25~P75)]
测量点位置 测量点数 实验次数(n) 颗粒物数量浓度峰值(p/cm3) 峰值出现时间(min) 前后x(cm) – 10 9 27 43.22(30.20~49.84) 5.0(4.3~5.4) 10 9 27 32.09(29.00~42.32) 5.1(4.8~5.4) T/M 258.00 142.00 P 值 0.10 0.26 水平距离y(cm) – 40 4 12 29.54(22.37~43.02) 5.4(5.1~5.7) – 20 4 12 39.12(33.45~50.77) 4.6(4.5~5.0) 0 4 12 57.16(40.18~81.80) 4.8(4.6~5.6) 20 4 12 37.87(31.29~42.18) 5.5(4.6~5.7) 40 4 12 32.58(29.54~46.67) 5.3(4.8~5.7) T/M 14.53 6.76 P 值 0.01 0.17 高度z(cm) – 20 7 21 62.45(51.23~74.94) 5.1(4.7~5.6) 0 7 21 40.14(34.19~46.61) 5.5(5.0~5.7) 20 7 21 28.88(25.06~32.52) 5.1(4.6~5.6) T/M 27.81 2.80 P 值 < 0.001 0.25 合计 22 72 40.68(29.95~51.81) 5.1(4.6~5.6) 注:相同高度相同水平距离处位于打印机侧前方与打印机侧后方(x)处测量点间的比较采用配对设计差值的Wilcoxon符号秩和检验,不同高度(z)及不同水平距离(y)处测量点间的比较采用Friedman秩和检验。 -
[1] Kagi N, Fujii S, Horiba Y, et al. Indoor air quality for chemical and ultrafine particle contaminants from printers[J]. Building and Environment, 2007, 42(5): 1949 – 1954. doi: 10.1016/j.buildenv.2006.04.008 [2] Tang T, Hurraß J, Gminski R, et al. Fine and ultrafine particles emitted from laser printers as indoor air contaminants in German offices[J]. Environmental Science and Pollution Research, 2012, 19(9): 3840 – 3849. doi: 10.1007/s11356-011-0647-5 [3] 吕利枝, 段淑敏, 王云. 打印复印设备释放污染物与健康效应[J]. 中国公共卫生, 2020, 36(10): 1523 – 1528. doi: 10.11847/zgggws1122236 [4] Lyu LZ, Li Y, Ou XX, et al. Health effects of occupational exposure to printer emissions on workers in China: cardiopulmonary function change[J]. NanoImpact, 2021, 21: 100289. doi: 10.1016/j.impact.2020.100289 [5] 石小飞, 陈瑞, 霍玲玲, 等. 打印机使用过程中颗粒物等有害因素释放及其毒理学效应研究进展[J]. 生态毒理学报, 2014, 9(2): 339 – 352. [6] 高琰钧, 魏玉虾, 陈俏, 等. 打印店内PM2.5和PM1的特征与影响因素分析[J]. 中华预防医学杂志, 2019(3): 284 – 288. doi: 10.3760/cma.j.issn.0253-9624.2019.03.009 [7] 黄虹, 圣莉, 贺冰洁, 等. 打印阶段PM2.5一次排放、碳组分谱与二次生成[J]. 环境科学与技术, 2020, 43(7): 59 – 65. [8] Mortaji N, Olya ME, Ataeefard M. Detection, characterisation and determination of indoor organic air pollutant and fine particles produced by laser printers[J]. Oriental Journal of Chemistry, 2018, 34(4): 1968 – 1977. doi: 10.13005/ojc/3404034 [9] Wensing M, Schripp T, Uhde E, et al. Ultra - fine particles release from hardcopy devices: sources, real - room measurements and efficiency of filter accessories[J]. Science of the Total Environ-ment, 2008, 407(1): 418 – 427. doi: 10.1016/j.scitotenv.2008.08.018 [10] 吕利枝, 刘林, 苏明阳, 等. 打印机释放颗粒物的特征与影响因素[J]. 环境与职业医学, 2020, 37(9): 833 – 839. [11] Schripp T, Wensing M, Uhde E, et al. Evaluation of ultrafine particle emissions from laser printers using emission test chambers[J]. Environmental Science and Technology, 2008, 42(12): 4338 – 4343. doi: 10.1021/es702426m [12] Valuntaitė V, Girgždienė R. Investigation of ozone emission and dispersion from photocopying machines[J]. Journal of Environ-mental Engineering and Landscape Management, 2007, 15(2): 61 – 67. doi: 10.3846/16486897.2007.9636910 [13] 朱维斌, 胡楠, 尹招琴. 室内打印机颗粒污染物特性的测量与分析[J]. 环境科学与技术, 2011, 34(5): 104 – 107. doi: 10.3969/j.issn.1003-6504.2011.05.024 [14] McGarry P, Morawska L, He CR, et al. Exposure to particles from laser printers operating within office workplaces[J]. Environmental Science and Technology, 2011, 45(15): 6444 – 6452. doi: 10.1021/es200249n -