高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污水流行病学及信息分析研究进展

臧金鑫 杨其帆 王娜

臧金鑫, 杨其帆, 王娜. 污水流行病学及信息分析研究进展[J]. 中国公共卫生, 2022, 38(7): 944-947. doi: 10.11847/zgggws1136112
引用本文: 臧金鑫, 杨其帆, 王娜. 污水流行病学及信息分析研究进展[J]. 中国公共卫生, 2022, 38(7): 944-947. doi: 10.11847/zgggws1136112
ZANG Jin-xin, YANG Qi-fan, WANG Na. Obtaining epidemiological information based on a new method – wastewater analysis: a review[J]. Chinese Journal of Public Health, 2022, 38(7): 944-947. doi: 10.11847/zgggws1136112
Citation: ZANG Jin-xin, YANG Qi-fan, WANG Na. Obtaining epidemiological information based on a new method – wastewater analysis: a review[J]. Chinese Journal of Public Health, 2022, 38(7): 944-947. doi: 10.11847/zgggws1136112

污水流行病学及信息分析研究进展

doi: 10.11847/zgggws1136112
基金项目: 国家自然科学基金委中英合作项目(81861138050)
详细信息
    作者简介:

    臧金鑫(1997 – ),女,山东人,硕士在读,研究方向:流行病学

    通信作者:

    王娜,E-mail:na.wang@fudan.edu.cn

  • 中图分类号: R 181

Obtaining epidemiological information based on a new method – wastewater analysis: a review

  • 摘要: 由于违禁药物滥用情况监测的实时信息的缺失,使违禁药物的滥用趋势越发严峻。近年来,一种通过污水分析来获得相关流行病学信息的新方法成为全球警方有效的追踪手段。对含有人类排泄物的生活污水中特定生物标志物进行化学分析,获得的信息可以用于估计受调查人口对某种特定物质的接触或消费的方法,叫做污水流行病学。随着研究的进一步发展,除了对违禁药物的评估,基于污水分析可以获得人群相关的多领域多学科的信息。本文对污水流行病学的原理进行了简单介绍,详细阐述了污水流行病学的调查范围及应用。结合国内外研究进展,对污水流行病学在中国发展现状和前景分析讨论并提出建议。
  • 图  1  污水流行病学的调查方法

  • [1] Baker DR, Barron L, Kasprzyk-Hordern B. Illicit and pharmaceu-tical drug consumption estimated via wastewater analysis. Part A: chemical analysis and drug use estimates[J]. Science of the Total Environment, 2014, 487: 629 – 641. doi: 10.1016/j.scitotenv.2013.11.107
    [2] Daughton CG. Illicit drugs in municipal sewage: proposed new non-intrusive tool to heighten public awareness of societal use of illicit-abused drugs and their potential for ecological consequences[M]//Daughton CG, Jones-Lepp TL. Pharmaceuticals and Care Products in the Environment: Scientific. Washington: American Chemical Society, 2001: 348–364.
    [3] Zuccato E, Chiabrando C, Castiglioni S, et al. Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse[J]. Environmental Health, 2005, 4(1): 14. doi: 10.1186/1476-069X-4-14
    [4] Zuccato E, Chiabrando C, Castiglioni S, et al. Estimating community drug abuse by wastewater analysis[J]. Environmental Health Perspectives, 2008, 116(8): 1027 – 1032. doi: 10.1289/ehp.11022
    [5] O'brien JW, Grant S, Banks APW, et al. A national wastewater monitoring program for a better understanding of public health: a case study using the Australian census[J]. Environment Inter-national, 2019, 122: 400 – 411. doi: 10.1016/j.envint.2018.12.003
    [6] Bijlsma L, Sancho JV, Pitarch E, et al. Simultaneous ultra-high-pressure liquid chromatography-tandem mass spectrometry determination of amphetamine and amphetamine-like stimulants, cocaine and its metabolites, and a cannabis metabolite in surface water and urban wastewater[J]. Journal of Chromatography A, 2009, 1216(15): 3078 – 3089. doi: 10.1016/j.chroma.2009.01.067
    [7] Van Nuijs ALN, Mougel JF, Tarcomnicu I, et al. Sewage epidemiology – a real-time approach to estimate the consumption of illicit drugs in Brussels, Belgium[J]. Environment International, 2011, 37(3): 612 – 621. doi: 10.1016/j.envint.2010.12.006
    [8] Reid MJ, Langford KH, Mørland J, et al. Quantitative assessment of time dependent drug-use trends by the analysis of drugs and related metabolites in raw sewage[J]. Drug and Alcohol Dependence, 2011, 119(3): 179 – 186. doi: 10.1016/j.drugalcdep.2011.06.007
    [9] Khan U, Van Nuijs ALN, Li J, et al. Application of a sewage-based approach to assess the use of ten illicit drugs in four Chinese megacities[J]. Science of the Total Environment, 2014, 487: 710 – 721. doi: 10.1016/j.scitotenv.2014.01.043
    [10] Lai FY, Bruno R, Leung HW, et al. Estimating daily and diurnal variations of illicit drug use in Hong Kong: a pilot study of using wastewater analysis in an Asian metropolitan city[J]. Forensic Science International, 2013, 233(1/3): 126 – 132.
    [11] Li J, Hou LL, Du P, et al. Estimation of amphetamine and methamphetamine uses in Beijing through sewage-based analysis[J]. Science of the Total Environment, 2014, 490: 724 – 732. doi: 10.1016/j.scitotenv.2014.05.042
    [12] Du P, Li KY, Li J, et al. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology[J]. Water Research, 2015, 84: 76 – 84. doi: 10.1016/j.watres.2015.07.025
    [13] 刘春叶, 王喆, 冯佳铭, 等. 污水流行病学调查辽宁和吉林两省甲基苯丙胺滥用量和流行率[J]. 环境化学, 2018, 37(8): 1763 – 1769. doi: 10.7524/j.issn.0254-6108.2017121802
    [14] Han B, Min H, Jeon M, et al. A rapid non-target screening method for determining prohibited substances in human urine using liquid chromatography/high-resolution tandem mass spectrometry[J]. Drug Testing and Analysis, 2019, 11(3): 382 – 391. doi: 10.1002/dta.2495
    [15] Crimmins BS, Holsen TM. Non-targeted screening in environmental monitoring programs[M]//Woods AG, Darie CC. Advancements of Mass Spectrometry in Biomedical Research. Cham: Springer, 2019: 731 – 741.
    [16] Ieda T, Hashimoto S, Isobe T, et al. Evaluation of a data-processing method for target and non-target screening using comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry for environmental samples[J]. Talanta, 2019, 194: 461 – 468. doi: 10.1016/j.talanta.2018.10.050
    [17] Mardal M, Andreasen MF, Mollerup CB, et al. HighResNPS. com: an online crowd-sourced HR-MS database for suspect and non-targeted screening of new psychoactive substances[J]. Journal of Analytical Toxicology, 2019, 43(7): 520 – 527. doi: 10.1093/jat/bkz030
    [18] Reid MJ, Langford KH, Mørland J, et al. Analysis and interpretation of specific ethanol metabolites, ethyl sulfate, and ethyl glucuronide in sewage effluent for the quantitative measurement of regional alcohol consumption[J]. Alcoholism: Clinical and Experimental Research, 2011, 35(9): 1593 – 1599.
    [19] Boogaerts T, Covaci A, Kinyua J, et al. Spatial and temporal trends in alcohol consumption in Belgian cities: a wastewater-based approach[J]. Drug and Alcohol Dependence, 2016, 160: 170 – 176. doi: 10.1016/j.drugalcdep.2016.01.002
    [20] Andrés-Costa MJ, Escrivá Ú, Andreu V, et al. Estimation of alcohol consumption during "Fallas" festivity in the wastewater of Valencia city (Spain) using ethyl sulfate as a biomarker[J]. Science of the Total Environment, 2016, 541: 616 – 622. doi: 10.1016/j.scitotenv.2015.09.126
    [21] Ryu Y, Barceló D, Barron LP, et al. Comparative measurement and quantitative risk assessment of alcohol consumption through wastewater-based epidemiology: an international study in 20 cities[J]. Science of the Total Environment, 2016, 565: 977 – 983. doi: 10.1016/j.scitotenv.2016.04.138
    [22] Lopes A, Silva N, Bronze MR, et al. Analysis of cocaine and nicotine metabolites in wastewater by liquid chromatography-tandem mass spectrometry. Cross abuse index patterns on a major community[J]. Science of the Total Environment, 2014, 487: 673 – 680. doi: 10.1016/j.scitotenv.2013.10.042
    [23] Rodríguez-Álvarez T, Rodil R, Rico M, et al. Assessment of local tobacco consumption by liquid chromatography-tandem mass spectrometry sewage analysis of nicotine and its metabolites, cotinine and trans-3′-hydroxycotinine, after enzymatic deconju-gation[J]. Analytical Chemistry, 2014, 86(20): 10274 – 10281. doi: 10.1021/ac503330c
    [24] Macku′ak T, Birošová L, Grabic R, et al. National monitoring of nicotine use in Czech and Slovak Republic based on wastewater analysis[J]. Environmental Science and Pollution Research, 2015, 22(18): 14000 – 14006. doi: 10.1007/s11356-015-4648-7
    [25] Wang DG, Dong QQ, Du J, et al. Using Monte Carlo simulation to assess variability and uncertainty of tobacco consumption in a city by sewage epidemiology[J]. BMJ Open, 2016, 6(2): e010583. doi: 10.1136/bmjopen-2015-010583
    [26] Senta I, Gracia-Lor E, Borsotti A, et al. Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment[J]. Water Research, 2015, 74: 23 – 33. doi: 10.1016/j.watres.2015.02.002
    [27] Rico M, Andrés-Costa MJ, Picó Y. Estimating population size in wastewater-based epidemiology. Valencia metropolitan area as a case study[J]. Journal of Hazardous Materials, 2017, 323: 156 – 165. doi: 10.1016/j.jhazmat.2016.05.079
    [28] Shannon KE, Lee DY, Trevors JT, et al. Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment[J]. Science of the Total Environment, 2007, 382(1): 121 – 129. doi: 10.1016/j.scitotenv.2007.02.039
    [29] Guerra P, Kim M, Shah A, et al. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes[J]. Science of the Total Environ-ment, 2014, 473 – 474: 235 – 243.
    [30] Senta I, Kostanjevecki P, Krizman-Matasic I, et al. Occurrence and behavior of macrolide antibiotics in municipal wastewater treat-ment: possible importance of metabolites, synthesis byproducts, and transformation products[J]. Environmental Science and Technology, 2019, 53(13): 7463 – 7472. doi: 10.1021/acs.est.9b01420
    [31] Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan[J]. Water Research, 2011, 45(2): 681 – 693. doi: 10.1016/j.watres.2010.08.033
    [32] Wang JL, Mao DQ, Mu QH, et al. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants[J]. Science of the Total Environment, 2015, 526: 366 – 373. doi: 10.1016/j.scitotenv.2015.05.046
    [33] Medema G, Heijnen L, Elsinga G, et al. Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands[J]. Environmental Science and Technology Letters, 2020, 7(7): 511 – 516. doi: 10.1021/acs.estlett.0c00357
    [34] Randazzo W, Cuevas-Ferrando E, Sanjuán R, et al. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance[J]. International Journal of Hygiene and Environmental Health, 2020, 230: 113621. doi: 10.1016/j.ijheh.2020.113621
    [35] Castiglioni S, Bagnati R, Fanelli R, et al. Removal of pharmaceu-ticals in sewage treatment plants in Italy[J]. Environmental Science and Technology, 2006, 40(1): 357 – 363. doi: 10.1021/es050991m
    [36] Rice J, Kasprzyk-Hordern B. A new paradigm in public health assessment: water fingerprinting for protein markers of public health using mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2019, 119: 115621. doi: 10.1016/j.trac.2019.115621
    [37] Yan JH, Xiao Y, Tan DQ, et al. Wastewater analysis reveals spatial pattern in consumption of anti-diabetes drug metformin in China[J]. Chemosphere, 2019, 222: 688 – 695. doi: 10.1016/j.chemosphere.2019.01.151
    [38] Rousis NI, Zuccato E, Castiglioni S. Wastewater-based epidemio-logy to assess human exposure to pyrethroid pesticides[J]. Environ-ment International, 2017, 99: 213 – 220. doi: 10.1016/j.envint.2016.11.020
    [39] Devault DA, Karolak S, Lévi Y, et al. Exposure of an urban population to pesticides assessed by wastewater-based epidemio-logy in a Caribbean island[J]. Science of the Total Environment, 2018, 644: 129 – 136. doi: 10.1016/j.scitotenv.2018.06.250
    [40] Kokotou MG, Thomaidis NS. Determination of eight artificial swee-teners in wastewater by hydrophilic interaction liquid chroma-tographytandem mass spectrometry[J]. Analytical Methods, 2013, 5(16): 3825 – 3833. doi: 10.1039/c3ay40599k
  • 加载中
图(1)
计量
  • 文章访问数:  1020
  • HTML全文浏览量:  463
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 接收日期:  2021-07-03
  • 网络出版日期:  2021-12-13
  • 刊出日期:  2022-07-01

目录

    /

    返回文章
    返回