Single and combined effect of vinyl chloride monomer and high-fat diet on gut microbiota in mice
-
摘要:
目的 探讨氯乙烯(VCM)染毒、高脂饮食及联合作用对小鼠肠道菌群的影响。 方法 SPF级C57BL/6J小鼠6周龄雄性20只,分为对照组、高脂组、VCM组(800 mg/m3)、氯乙烯联合高脂组(简称联合组)。高脂饮食和VCM染毒处理13周,取粪便做16S rDNA测序,分析肠道微生物的改变。 结果 高脂饮食及VCM染毒后,改变了肠道菌群的丰度及群落结构。门水平上,处理组的厚壁菌门(Firmicutes)与拟杆菌门(Bacteroidetes)比值均高于对照组;属水平上,各组肠道微生物聚集程度不同。样本复杂度分析中,高脂组物种数低于对照组和联合组(P<0.05);高脂组香农指数(Shannon)低于其他3个组(P<0.05);多样本比较分析中,各组菌群群落组成存在差异。 结论 氯乙烯染毒、高脂饮食及联合作用导致小鼠肠道微生物失调,两者联合主要改变肠道微生物属水平丰度。 Abstract:Objective To investigate the impact of vinyl chloride monomer (VCM) alone or in combination with high-fat diet on gut microbe in mice. Methods Twenty 6-week-old male specific pathogen-free C57BL/6J mice were divided into four groups: control, high-fat diet (40% of fat), VCM (static inhalation of 2 hours at dosage of 800 mg/m3, 5 times per week continuously for 13 weeks), and VCM plus high-fat diet. By the end of treatments, fecal samples were collected from the mice for 16S rDNA sequence analysis to examine alterations of the mice′s gut microbe. Results The abundance and community structure of gut microbe changed in the mice with high-fat diet and VCM exposure. In terms of phylum, the ratio of Firmicutes to Bacteroidetes of the mice exposed to VCM and high-fat diet were higher than those of control mice. At genus level, the degree of gut microbes aggregation was different among the four groups. Alpha diversity analysis revealed that the observed gut species of the mice with high-fat diet were inferior to those of the mice of control and VCM plus high-fat diet group (both P < 0.05); the Shannon index for the mice with high-fat diet was significantly lower than that for the mice of other three groups (all P < 0.05). Beta diversity analysis indicated that there were differences in community composition of gut microbes among the four groups. Conclusion Exposure to VCM and high-fat diet, alone or combined, could lead to gut microbial imbalance in mice and the combined exposure mainly affect the abundance of gut microbial genera. -
Key words:
- vinyl chloride monomer /
- high-fat diet /
- gut microbiota /
- 16S rDNA
-
表 1 各组中优势菌群的比例改变
组别 Firmicutes Bacteroidetes F/B 对照组 0.43768 0.40188 1.08907 高脂组 0.71347 0.13380 5.33222 VCM组 0.69500 0.20638 3.36760 联合组 0.57110 0.27959 2.04259 -
[1] Kolodziejczyk AA, Zheng DP, Shibolet O, et al. The role of the microbiome in NAFLD and NASH[J]. EMBO Molecular Medicine, 2019, 11(2): e9302. [2] Dong TS, Gupta A. Influence of early life, diet, and the environment on the microbiome[J]. Clinical Gastroenterology and Hepatology, 2019, 17(2): 231 – 242. doi: 10.1016/j.cgh.2018.08.067 [3] Ji Y, Yin Y, Li ZR, et al. Gut microbiota - derived components and metabolites in the progression of non - alcoholic fatty liver disease (NAFLD)[J]. Nutrients, 2019, 11(8): 1712. doi: 10.3390/nu11081712 [4] Zhou RR, Fan XG, Schnabl B. Role of the intestinal microbiome in liver fibrosis development and new treatment strategies[J]. Translational Research, 2019, 209: 22 – 38. doi: 10.1016/j.trsl.2019.02.005 [5] Sharpton SR, Ajmera V, Loomba R. Emerging role of the gut microbiome in nonalcoholic fatty liver disease: from composition to function[J]. Clinical Gastroenterology and Hepatology, 2019, 17(2): 296 – 306. doi: 10.1016/j.cgh.2018.08.065 [6] Chen JZ, Vitetta L. Gut microbiota metabolites in NAFLD pathogenesis and therapeutic implications[J]. International Journal of Molecular Sciences, 2020, 21(15): 5214. doi: 10.3390/ijms21155214 [7] Ma JL, Zhou QH, Li HK. Gut microbiota and nonalcoholic fatty liver disease: insights on mechanisms and therapy[J]. Nutrients, 2017, 9(10): 1124. doi: 10.3390/nu9101124 [8] 李祖寅, 周志杰, 晏滨, 等. 内质网应激在非酒精性脂肪肝病中的作用[J]. 中华肥胖与代谢病电子杂志, 2020, 6(2): 122 – 126. doi: 10.3877/cma.j.issn.2095-9605.2020.02.009 [9] 冯志杰, 于洪海. 非酒精性脂肪性肝病的治疗[J]. 中国全科医学, 2008, 11(2): 95 – 97. [10] Bove FJ, Ruckart PZ, Maslia M, et al. Mortality study of civilian employees exposed to contaminated drinking water at USMC Base Camp Lejeune: a retrospective cohort study[J]. Environmental Health, 2014, 13: 68. doi: 10.1186/1476-069X-13-68 [11] Brandt-Rauf PW, Li YL, Long CM, et al. Plastics and carcinogenesis: the example of vinyl chloride[J]. Journal of Carcinogenesis, 2012, 11(1): 5. doi: 10.4103/1477-3163.93700 [12] Fedeli U, Girardi P, Mastrangelo G. Occupational exposure to vinyl chloride and liver diseases[J]. World Journal of Gastroenterology, 2019, 25(33): 4885 – 4891. doi: 10.3748/wjg.v25.i33.4885 [13] Wang CW, Chuang HY, Liao KW, et al. Urinary thiodiglycolic acid is associated with increased risk of non - alcoholic fatty liver disease in children living near a petrochemical complex[J]. Environment International, 2019, 131: 104978. doi: 10.1016/j.envint.2019.104978 [14] 黎燕, 王祖兵, 吴炜. 长期低浓度接触氯乙烯工人疾病谱分析[J]. 中国工业医学杂志, 2013, 26(4): 294 – 296. [15] 张林, 陈诗奇, 马文彦, 等. 基准剂量法评估低剂量氯乙烯亚慢性染毒致肝毒性的生物接触限值[J]. 环境与职业医学, 2018, 35(5): 384 – 388. doi: 10.13213/j.cnki.jeom.2018.17690 [16] Di Lorenzo L, Corfiati M, Catacchio T. Liver angiosarcoma from past exposure to vinyl chloride: a case report[J]. La Medicina del Lavoro, 2012, 103(6): 459 – 465. [17] 杨慧霞, 王俊平. 1982 — 2012年中国居民膳食摄入变化[J]. 食品工业, 2020, 41(6): 244 – 248. [18] 钟妍, 朱永湘, 范建高. 肥胖相关脂肪性肝病的影响因素[J]. 肝脏, 2008, 13(4): 347 – 348. doi: 10.3969/j.issn.1008-1704.2008.04.024 [19] Pilling D, Karhadkar TR, Gomer RH. High - fat diet - induced adipose tissue and liver inflammation and steatosis in mice are reduced by inhibiting sialidases[J]. The American Journal of Pathology, 2021, 191(1): 131 – 143. doi: 10.1016/j.ajpath.2020.09.011 [20] 翟凤英, 王惠君, 杜树发, 等. 中国居民膳食结构与营养状况变迁追踪[J]. 医学研究杂志, 2006, 35(4): 3 – 6. doi: 10.3969/j.issn.1673-548X.2006.04.002 [21] Anders LC, Lang AL, Anwar-Mohamed A, et al. Vinyl chloride metabolites potentiate inflammatory liver injury caused by LPS in mice[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2016, 151(2): 312 – 323. doi: 10.1093/toxsci/kfw045 [22] 陈诗奇, 王倩, 吕懿, 等. 亚慢性氯乙烯染毒联合高脂饮食对小鼠肝脂肪变性的研究[J]. 毒理学杂志, 2019, 33(2): 108 – 112. [23] Wang Q, Zhang L, Chen SQ, et al. Role of endoplasmic reticulum stress and oxidative stress in vinyl chloride - induced hepatic steatosis in mice[J]. Toxicology and Applied Pharmacology, 2019, 381: 114730. doi: 10.1016/j.taap.2019.114730 [24] Leeming ER, Johnson AJ, Spector TD, et al. Effect of diet on the gut microbiota: rethinking intervention duration[J]. Nutrients, 2019, 11(12): 2862. doi: 10.3390/nu11122862 [25] Chin VK, Yong VC, Chong PP, et al. Mycobiome in the gut: a multiperspective review[J]. Mediators of Inflammation, 2020, 2020: 9560684. [26] Seo DO, Holtzman DM. Gut microbiota: from the forgotten organ to a potential key player in the pathology of Alzheimer's disease[J]. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 2020, 75(7): 1232 – 1241. doi: 10.1093/gerona/glz262 [27] 吴亚, 方圆圆, 陈彦辉, 等. 基于16SrDNA测序的肥胖儿童肠道菌群变化分析[J]. 中国儿童保健杂志, 2018, 26(12): 1297 – 1300. doi: 10.11852/zgetbjzz2018-1011 [28] 陈丹丹, 顾胜华, 张金娜, 等. 肠道菌群对免疫系统的影响及其群落分析方法[J]. 应用与环境生物学报, 2013, 19(3): 542 – 546. [29] 杨莉, 杨卫星, 张智芳, 等. 高通量测序研究德昂酸茶对高脂饮食小鼠肠道微生物的影响[J]. 扬州大学学报(农业与生命科学版), 2020, 41(2): 100 – 106. doi: 10.16872/j.cnki.1671-4652.2020.02.019 [30] Beisner J, Gonzalez-Granda A, Basrai M, et al. Fructose - induced intestinal microbiota shift following two types of short - term high - fructose dietary phases[J]. Nutrients, 2020, 12(11): 3444. doi: 10.3390/nu12113444 [31] 王文建, 周潜, 戴文魁, 等. 难治性癫痫婴幼儿肠道菌群的变化[J]. 中国微生态学杂志, 2017, 29(5): 502 – 505. doi: 10.13381/j.cnki.cjm.201705002 [32] Zhang S, Zhong G, Shao D, et al. Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community[J]. Poultry Science, 2021, 100(3): 100935. doi: 10.1016/j.psj.2020.12.032 [33] Gu Y, Liu C, Zheng NN, et al. Metabolic and gut microbial characterization of obesity - prone mice under a high - fat diet[J]. Journal of Proteome Research, 2019, 18(4): 1703 – 1714. doi: 10.1021/acs.jproteome.8b00945 [34] 王丽媛, 秦文, 霍军生, 等. 黄酒对高脂饮食小鼠的肥胖指标及肠道菌群的影响[J]. 中国酿造, 2019, 38(12): 53 – 57. doi: 10.11882/j.issn.0254-5071.2019.12.011 [35] Cai W, Xu JX, Li G, et al. Ethanol extract of propolis prevents high - fat diet - induced insulin resistance and obesity in association with modulation of gut microbiota in mice[J]. Food Research International, 2020, 130: 108939. doi: 10.1016/j.foodres.2019.108939 [36] Zhong XZ, Harrington JM, Millar SR, et al. Gut microbiota associations with metabolic health and obesity status in older adults[J]. Nutrients, 2020, 12(8): 2364. doi: 10.3390/nu12082364 -