Species diversity and potential pathogenicity of bacteria carried by wild birds' claws in Yunnan province
-
摘要:
目的 初步调查野生鸟类趾爪携带细菌的多样性及潜在致病性种群,从生态学角度明确开展野生鸟类携带致病性细菌监测的必要性。 方法 采集野生鸟类趾爪样品12份,采用基于扩增子序列变体(amplicon sequence variants,ASV)的高通量测序技术分析不同鸟类趾爪携带的细菌多样性及致病性细菌的组成。 结果 野生鸟类趾爪可携带其生境中的优势细菌,不同鸟类携带的细菌及组成相似度与鸟类生活习性相关。在属和种水平,野生鸟类携带的致病菌总占比均较高,分别为81.25 %和75.00 %,其中,林鸟携带有更多种类的致病细菌;水鸟携带的致病菌除少量为植物病原菌外,其他均为对人致病的细菌。 结论 野生鸟类趾爪会携带其生境中的致病细菌,对不同类型野生鸟类携带的病原微生物的监测需要纳入公共卫生部门的日常监测范围;同时野生鸟类趾爪可作为重点样品采集部位。 Abstract:Objective To investigate species diversity and potential pathogenicity of bacteria carried by wild birds’ claws preliminarily for clarifying the necessity of monitoring pathogenic bacteria carried by wild birds. Methods Toe/claw swab specimens were collected from 12 kinds of wild forest/aquatic birds for isolation of bacteria. Amplicon sequence variants (ASV)-based high-throughput sequencing was used to analyze bacterial species composition and pathogenic bacteria isolated. Results A large number of bacteria dominant in the wild birds’ habitats were detected and the bacterial spectrum and its similarity for the bacteria detected in the wild birds of different species were associated with the birds’ living habitats. Of all the detected bacteria at genus and species levels, 81.25% and 75.00% were pathogenic bacteria, with more kinds of pathogenic bacteria detected in the forest birds and all as human pathogenic bacteria except for a small amount of plant pathogenic bacteria in the aquatic birds. Conclusion Wild birds’ toes/claws could carry pathogenic bacteria from their habitats and the detection of pathogenic microorganisms carried by different types of wild birds needs to be included in the scope of routine monitoring for public health. -
表 1 不同鸟类所携带细菌群落Alpha多样性指数
物种 ASV数 Chao指数 Ace指数 Shannon指数 Simpson指数 中白鹭 380 380.26 381.39 5.492 88.31 % 绿翅短脚鹎 541 541.49 545.33 6.764 93.74 % 灰眶雀鹛 488 490.62 494.74 7.270 98.43 % 小仙鹟 865 866.11 869.27 7.811 98.85 % 绿背山雀 808 808.78 851.05 7.239 98.04 % 注:物种名称和排列顺序依照《中国鸟类分类与分布名录(第三版)》[22] 表 2 种水平不同鸟类携带细菌的分类
细菌种属 中白鹭 绿翅短脚鹎 灰眶雀鹛 小仙鹟 绿背山雀 直肠弯曲菌 0.001475 0.012894 0.002830 0.005685 0.001523 亚弧弯曲菌 0.665078 0.063649 0.069958 0.047545 0.064213 婴儿链球菌 0.004425 0.176406 0.175601 0.174677 0.091624 血肠球菌 0.002269 0.029904 0.019337 0.022739 0.076396 产气荚膜梭菌 0.050488 0.023320 0.011162 0.014729 0.016751 巴氏梭菌 0.015317 0.004664 0.004716 0.005426 0.005838 双酶梭菌 0.051169 0.019479 0.011791 0.011111 0.011675 索氏梭菌 0.029272 0.010974 0.006917 0.008269 0.010660 梭状杆菌 0.035398 0.009053 0.006446 0.008010 0.007868 类志贺邻单胞菌 0.055934 0.033196 0.007389 0.010853 0.006599 毛绒厌氧杆菌 0.004425 0.015364 0.024210 0.044703 0.042386 痤疮丙酸杆菌 0.001929 0.027984 0.004559 0.012145 0.007868 惰性凝聚杆菌 0.002383 0.068861 0.004087 0.010853 0.006091 粘质沙雷菌 0.005446 0.035665 0.009590 0.021705 0.004061 寡养单胞菌 0.001361 0.010425 0.003301 0.002842 0.003553 泡囊短波单胞菌 0.001702 0.007407 0.002044 0.003618 0.004822 立克次氏体 0.001702 0.002195 0.002515 0.001809 0.005076 生黃瘤胃球菌 0.000567 0.003841 0.001100 0.002067 0.005076 约氏不动杆菌 0.006467 0.009602 0.003301 0.002842 0.004061 普氏栖粪杆菌 0.013388 0.006584 0.001729 0.016021 0.002538 索失鲸杆菌 0.038462 0.020576 0.005659 0.015245 0.012183 乳酸杆菌 0.002156 0.024143 0.034586 0.032558 0.016497 分支涅瓦菌 0.001702 0.007956 0.004245 0.006718 0.001269 甲基杆菌 0.000000 0.010700 0.005502 0.006202 0.003807 微黄色奈瑟氏菌 0.000000 0.006859 0.004402 0.002842 0.003046 Rahnella aquatilis 0.000000 0.013169 0.003144 0.001550 0.003807 粘滑罗斯菌 0.000000 0.034568 0.228423 0.005168 0.276396 副流感嗜血杆菌 0.000000 0.171742 0.016350 0.057364 0.040863 殊异韦荣菌 0.000000 0.057064 0.122779 0.214212 0.100254 小韦荣球菌 0.000000 0.035665 0.013363 0.052455 0.029188 Bulleidia moorei 0.000000 0.007407 0.035215 0.020413 0.022843 粪产碱菌 0.000000 0.010700 0.001415 0.008010 0.002030 牙内卟啉单胞菌 0.000000 0.002195 0.013677 0.008010 0.005330 有害新月形单胞菌 0.000000 0.005761 0.002987 0.006718 0.000000 柯氏棒状杆菌 0.000000 0.008230 0.001100 0.004393 0.001777 变黑普氏菌 0.000000 0.002469 0.011476 0.008269 0.008376 产黑素普雷沃菌 0.000000 0.006584 0.118849 0.119380 0.090355 中间普氏菌 0.000000 0.002743 0.004245 0.002842 0.003299 冻水玫瑰单胞菌 0.000908 0.000000 0.000000 0.000000 0.000000 Roseomonas frigidaquae 0.000454 0.000000 0.000000 0.000000 0.000000 罗伊氏乳杆菌 0.003631 0.000000 0.000000 0.000000 0.000000 Methylibium petroleiphilum 0.001248 0.000000 0.000000 0.000000 0.000000 Reyranella massiliensis 0.000794 0.000000 0.000000 0.000000 0.000000 卵形拟杆菌 0.000454 0.000000 0.000000 0.000000 0.000000 -
[1] Wu CI, Wen HJ, Lu J, et al. On the origin of SARS - CoV - 2 – the blind watchmaker argument[J]. Science China Life Sciences, 2021, 64(9): 1560 – 1563. doi: 10.1007/s11427-021-1972-1 [2] Bloom JD, Chan YA, Baric RS, et al. Investigate the origins of COVID - 19[J]. Science, 2021, 372(6543): 694. [3] Levin N, Yebra M, Phinn S. Unveiling the factors responsible for Australia’s black summer fires of 2019/2020[J]. Fire, 2021, 4(3): 58. doi: 10.3390/fire4030058 [4] Zhong ZP, Tian FN, Roux S, et al. Glacier ice archives nearly 15 000 - year - old microbes and phages[J]. Microbiome, 2021, 9(1): 160. doi: 10.1186/s40168-021-01106-w [5] 姜宝法, 丁国永, 刘雪娜. 暴雨洪涝与人类健康关系的研究进展[J]. 山东大学学报(医学版), 2018, 56(8): 21 – 28,36. [6] Reperant LA, Osterhaus ADME. AIDS, Avian flu, SARS, MERS, Ebola, Zika. what next?[J]. Vaccine, 2017, 35(35): 4470 – 4474. doi: 10.1016/j.vaccine.2017.04.082 [7] Michel F, Sieg M, Fischer D, et al. Evidence for West Nile virus and Usutu virus infections in wild and resident birds in Germany, 2017 and 2018[J]. Viruses, 2019, 11(7): 674. doi: 10.3390/v11070674 [8] Wang J, Ma ZB, Zeng ZL, et al. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes[J]. Zoological Research, 2017, 38(2): 55 – 80. doi: 10.24272/j.issn.2095-8137.2017.003 [9] Brown Jordan A, Narang D, Essen SC, et al. Serological evidence for influenza A virus exposure in wild birds in Trinidad and Tobago[J]. Veterinary Sciences, 2018, 5(2): 50. doi: 10.3390/vetsci5020050 [10] 姜林, 邓巍, 李飞腾, 等. 鸟类传播捕食线虫真菌的可能性探究[J]. 野生动物学报, 2022, 43(2): 412 – 420. [11] Vaz-Moreira I, Egas C, Nunes OC, et al. Culture - dependent and culture - independent diversity surveys target different bacteria: a case study in a freshwater sample[J]. Antonie van Leeuwenhoek, 2011, 100(2): 245 – 257. doi: 10.1007/s10482-011-9583-0 [12] 邹发生, 陈桂珠. 雾网在森林鸟类群落研究中的应用[J]. 应用生态学报, 2003, 14(9): 1557 – 1560. doi: 10.3321/j.issn:1001-9332.2003.09.033 [13] Wu XY, Zhang HH, Chen J, et al. Comparison of the fecal microbiota of dholes high - throughput illumina sequencing of the V3-V4 region of the 16S rRNA gene[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3577 – 3586. doi: 10.1007/s00253-015-7257-y [14] Fadrosh DW, Ma B, Gajer P, et al. An improved dual - indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform[J]. Microbiome, 2014, 2(1): 6. doi: 10.1186/2049-2618-2-6 [15] Wang W, Zhai S, Xia Y, et al. Ochratoxin A induces liver inflammation: involvement of intestinal microbiota[J]. Micro-biome,2019, (1): 151. [16] Rivas R, Velázquez E, Willems A, et al. A new species of Devosia that forms a unique nitrogen - fixing root - nodule symbiosis with the aquatic legume Neptunia natans (L. f. ) druce[J]. Applied and Environmental Microbiology, 2002, 68(11): 5217 – 5222. doi: 10.1128/AEM.68.11.5217-5222.2002 [17] Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high - resolution sample inference from illumina amplicon data[J]. Nature Methods, 2016, 13(7): 581 – 583. doi: 10.1038/nmeth.3869 [18] Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker - gene amplicon sequences with QIIME 2’s q2 - feature - classifier plugin[J]. Microbiome, 2018, 6(1): 90. doi: 10.1186/s40168-018-0470-z [19] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA - seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8 [20] Mandal S, van Treuren W, White RA, et al. Analysis of composi-tion of microbiomes: a novel method for studying microbial composition[J]. Microbial Ecology in Health and Disease, 2015, 26: 27663. [21] Vázquez-Baeza Y, Pirrung M, Gonzalez A, et al. EMPeror: a tool for visualizing high - throughput microbial community data[J]. GigaScience, 2013, 2(1): 16. doi: 10.1186/2047-217X-2-16 [22] 郑光美. 中国鸟类分类与分布名录[M]. 3版. 北京: 科学出版社, 2017: 1 – 492. [23] 任氢欣, 曾齐, 张必弦, 等. 基于高通量测序的大豆根际真菌群落动态变化分析[J]. 分子植物育种, 2021, 19(14): 4836 – 4845. [24] 张玲豫, 齐雅柯, 焦健, 等. 河西走廊沙地芦苇(Phragmites australis)根际土壤微生物群落多样性[J]. 中国沙漠, 2021, 41(6): 1 – 9. [25] 张燕林, 黄彩凤, 包明琢, 等. 生物炭及其老化对杉木林土壤养分含量和微生物群落组成影响的室内模拟[J]. 林业科学, 2021, 57(6): 169 – 179. doi: 10.11707/j.1001-7488.20210619 [26] 张仲富, 喻庆国, 王行, 等. 植物群落和土壤理化性质对碧塔海湿地土壤细菌群落的影响[J]. 应用生态学报, 2021, 32(6): 2199 – 2208. [27] Zhao GH, Zhou LZ, Dong YQ, et al. The gut microbiome of hooded cranes (Grus monacha) wintering at Shengjin Lake, China[J]. Microbiology Open, 2017, 6(3): e00447. doi: 10.1002/mbo3.447 [28] 祝令伟, 景洁, 梁冰, 等. 野生水鸟感染霍乱弧菌和沙门菌等病原菌的分离和鉴定[J]. 中国人兽共患病学报, 2019, 35(3): 212 – 215, 222. [29] Greig J, Rajić A, Young I, et al. A scoping review of the role of wildlife in the transmission of bacterial pathogens and antimicrobial resistance to the food chain[J]. Zoonoses and Public Health, 2015, 62(4): 269 – 284. doi: 10.1111/zph.12147 [30] Morens DM, Fauci AS. Emerging pandemic diseases: how we got to COVID - 19[J]. Cell, 2020, 182(5): 1077 – 1092. doi: 10.1016/j.cell.2020.08.021 [31] Weber TP, Stilianakis NI. Ecologic immunology of avian influenza (H5N1) in migratory birds[J]. Emerging Infectious Diseases, 2007, 13(8): 1139 – 1143. doi: 10.3201/eid1308.070319 [32] Zhao N, Wang SP, Li HY, et al. Influence of novel highly pathogenic avian influenza A (H5N1) virus infection on migrating whooper swans fecal microbiota[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 46. doi: 10.3389/fcimb.2018.00046 [33] Turan N, Ozsemir C, Yilmaz A, et al. Identification of Newcastle disease virus subgenotype VII. 2 in wild birds in Turkey[J]. BMC Veterinary Research, 2020, 16(1): 277. doi: 10.1186/s12917-020-02503-3 -