高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

野生鸟类趾爪携带细菌多样性及其潜在致病性种群分析

姜林 邓巍 张淑霞 杨晓燕

姜林, 邓巍, 张淑霞, 杨晓燕. 野生鸟类趾爪携带细菌多样性及其潜在致病性种群分析[J]. 中国公共卫生, 2023, 39(1): 36-41. doi: 10.11847/zgggws1137091
引用本文: 姜林, 邓巍, 张淑霞, 杨晓燕. 野生鸟类趾爪携带细菌多样性及其潜在致病性种群分析[J]. 中国公共卫生, 2023, 39(1): 36-41. doi: 10.11847/zgggws1137091
JIANG Lin, DENG Wei, ZHANG Shu-xia, . Species diversity and potential pathogenicity of bacteria carried by wild birds' claws in Yunnan province[J]. Chinese Journal of Public Health, 2023, 39(1): 36-41. doi: 10.11847/zgggws1137091
Citation: JIANG Lin, DENG Wei, ZHANG Shu-xia, . Species diversity and potential pathogenicity of bacteria carried by wild birds' claws in Yunnan province[J]. Chinese Journal of Public Health, 2023, 39(1): 36-41. doi: 10.11847/zgggws1137091

野生鸟类趾爪携带细菌多样性及其潜在致病性种群分析

doi: 10.11847/zgggws1137091
基金项目: 第二次青藏高原综合科学考察研究资助(2019QZKK0402);云南省教育厅科学研究基金(2021Y390)
详细信息
    作者简介:

    姜林(1995 – ),女,山东济宁人,硕士,研究方向:微生物生态学

    通讯作者:

    杨晓燕,E-mail:yangxy@eastern-himalaya.cn

  • 中图分类号: Q 938.1

Species diversity and potential pathogenicity of bacteria carried by wild birds' claws in Yunnan province

  • 摘要:   目的  初步调查野生鸟类趾爪携带细菌的多样性及潜在致病性种群,从生态学角度明确开展野生鸟类携带致病性细菌监测的必要性。  方法  采集野生鸟类趾爪样品12份,采用基于扩增子序列变体(amplicon sequence variants,ASV)的高通量测序技术分析不同鸟类趾爪携带的细菌多样性及致病性细菌的组成。  结果  野生鸟类趾爪可携带其生境中的优势细菌,不同鸟类携带的细菌及组成相似度与鸟类生活习性相关。在属和种水平,野生鸟类携带的致病菌总占比均较高,分别为81.25 %和75.00 %,其中,林鸟携带有更多种类的致病细菌;水鸟携带的致病菌除少量为植物病原菌外,其他均为对人致病的细菌。  结论  野生鸟类趾爪会携带其生境中的致病细菌,对不同类型野生鸟类携带的病原微生物的监测需要纳入公共卫生部门的日常监测范围;同时野生鸟类趾爪可作为重点样品采集部位。
  • 图  1  Alpha多样性稀疏曲线

    图  2  不同鸟类细菌门水平群落组成

    图  3  不同鸟类细菌属水平物种群落组成

    图  4  ASVs水平不同鸟类细菌的PCoA分析

    表  1  不同鸟类所携带细菌群落Alpha多样性指数

    物种ASV数Chao指数Ace指数Shannon指数Simpson指数
    中白鹭380380.26381.395.49288.31 %
    绿翅短脚鹎541541.49545.336.76493.74 %
    灰眶雀鹛488490.62494.747.27098.43 %
    小仙鹟865866.11869.277.81198.85 %
    绿背山雀808808.78851.057.23998.04 %
      注:物种名称和排列顺序依照《中国鸟类分类与分布名录(第三版)》[22]
    下载: 导出CSV

    表  2  种水平不同鸟类携带细菌的分类

    细菌种属中白鹭绿翅短脚鹎灰眶雀鹛小仙鹟绿背山雀
    直肠弯曲菌0.0014750.0128940.0028300.0056850.001523
    亚弧弯曲菌0.6650780.0636490.0699580.0475450.064213
    婴儿链球菌0.0044250.1764060.1756010.1746770.091624
    血肠球菌0.0022690.0299040.0193370.0227390.076396
    产气荚膜梭菌0.0504880.0233200.0111620.0147290.016751
    巴氏梭菌0.0153170.0046640.0047160.0054260.005838
    双酶梭菌0.0511690.0194790.0117910.0111110.011675
    索氏梭菌0.0292720.0109740.0069170.0082690.010660
    梭状杆菌0.0353980.0090530.0064460.0080100.007868
    类志贺邻单胞菌0.0559340.0331960.0073890.0108530.006599
    毛绒厌氧杆菌0.0044250.0153640.0242100.0447030.042386
    痤疮丙酸杆菌0.0019290.0279840.0045590.0121450.007868
    惰性凝聚杆菌0.0023830.0688610.0040870.0108530.006091
    粘质沙雷菌0.0054460.0356650.0095900.0217050.004061
    寡养单胞菌0.0013610.0104250.0033010.0028420.003553
    泡囊短波单胞菌0.0017020.0074070.0020440.0036180.004822
    立克次氏体0.0017020.0021950.0025150.0018090.005076
    生黃瘤胃球菌0.0005670.0038410.0011000.0020670.005076
    约氏不动杆菌0.0064670.0096020.0033010.0028420.004061
    普氏栖粪杆菌0.0133880.0065840.0017290.0160210.002538
    索失鲸杆菌0.0384620.0205760.0056590.0152450.012183
    乳酸杆菌0.0021560.0241430.0345860.0325580.016497
    分支涅瓦菌0.0017020.0079560.0042450.0067180.001269
    甲基杆菌0.0000000.0107000.0055020.0062020.003807
    微黄色奈瑟氏菌0.0000000.0068590.0044020.0028420.003046
    Rahnella aquatilis0.0000000.0131690.0031440.0015500.003807
    粘滑罗斯菌0.0000000.0345680.2284230.0051680.276396
    副流感嗜血杆菌0.0000000.1717420.0163500.0573640.040863
    殊异韦荣菌0.0000000.0570640.1227790.2142120.100254
    小韦荣球菌0.0000000.0356650.0133630.0524550.029188
    Bulleidia moorei0.0000000.0074070.0352150.0204130.022843
    粪产碱菌0.0000000.0107000.0014150.0080100.002030
    牙内卟啉单胞菌0.0000000.0021950.0136770.0080100.005330
    有害新月形单胞菌0.0000000.0057610.0029870.0067180.000000
    柯氏棒状杆菌0.0000000.0082300.0011000.0043930.001777
    变黑普氏菌0.0000000.0024690.0114760.0082690.008376
    产黑素普雷沃菌0.0000000.0065840.1188490.1193800.090355
    中间普氏菌0.0000000.0027430.0042450.0028420.003299
    冻水玫瑰单胞菌0.0009080.0000000.0000000.0000000.000000
    Roseomonas frigidaquae0.0004540.0000000.0000000.0000000.000000
    罗伊氏乳杆菌0.0036310.0000000.0000000.0000000.000000
    Methylibium petroleiphilum0.0012480.0000000.0000000.0000000.000000
    Reyranella massiliensis0.0007940.0000000.0000000.0000000.000000
    卵形拟杆菌0.0004540.0000000.0000000.0000000.000000
    下载: 导出CSV
  • [1] Wu CI, Wen HJ, Lu J, et al. On the origin of SARS - CoV - 2 – the blind watchmaker argument[J]. Science China Life Sciences, 2021, 64(9): 1560 – 1563. doi: 10.1007/s11427-021-1972-1
    [2] Bloom JD, Chan YA, Baric RS, et al. Investigate the origins of COVID - 19[J]. Science, 2021, 372(6543): 694.
    [3] Levin N, Yebra M, Phinn S. Unveiling the factors responsible for Australia’s black summer fires of 2019/2020[J]. Fire, 2021, 4(3): 58. doi: 10.3390/fire4030058
    [4] Zhong ZP, Tian FN, Roux S, et al. Glacier ice archives nearly 15 000 - year - old microbes and phages[J]. Microbiome, 2021, 9(1): 160. doi: 10.1186/s40168-021-01106-w
    [5] 姜宝法, 丁国永, 刘雪娜. 暴雨洪涝与人类健康关系的研究进展[J]. 山东大学学报(医学版), 2018, 56(8): 21 – 28,36.
    [6] Reperant LA, Osterhaus ADME. AIDS, Avian flu, SARS, MERS, Ebola, Zika. what next?[J]. Vaccine, 2017, 35(35): 4470 – 4474. doi: 10.1016/j.vaccine.2017.04.082
    [7] Michel F, Sieg M, Fischer D, et al. Evidence for West Nile virus and Usutu virus infections in wild and resident birds in Germany, 2017 and 2018[J]. Viruses, 2019, 11(7): 674. doi: 10.3390/v11070674
    [8] Wang J, Ma ZB, Zeng ZL, et al. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes[J]. Zoological Research, 2017, 38(2): 55 – 80. doi: 10.24272/j.issn.2095-8137.2017.003
    [9] Brown Jordan A, Narang D, Essen SC, et al. Serological evidence for influenza A virus exposure in wild birds in Trinidad and Tobago[J]. Veterinary Sciences, 2018, 5(2): 50. doi: 10.3390/vetsci5020050
    [10] 姜林, 邓巍, 李飞腾, 等. 鸟类传播捕食线虫真菌的可能性探究[J]. 野生动物学报, 2022, 43(2): 412 – 420.
    [11] Vaz-Moreira I, Egas C, Nunes OC, et al. Culture - dependent and culture - independent diversity surveys target different bacteria: a case study in a freshwater sample[J]. Antonie van Leeuwenhoek, 2011, 100(2): 245 – 257. doi: 10.1007/s10482-011-9583-0
    [12] 邹发生, 陈桂珠. 雾网在森林鸟类群落研究中的应用[J]. 应用生态学报, 2003, 14(9): 1557 – 1560. doi: 10.3321/j.issn:1001-9332.2003.09.033
    [13] Wu XY, Zhang HH, Chen J, et al. Comparison of the fecal microbiota of dholes high - throughput illumina sequencing of the V3-V4 region of the 16S rRNA gene[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3577 – 3586. doi: 10.1007/s00253-015-7257-y
    [14] Fadrosh DW, Ma B, Gajer P, et al. An improved dual - indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform[J]. Microbiome, 2014, 2(1): 6. doi: 10.1186/2049-2618-2-6
    [15] Wang W, Zhai S, Xia Y, et al. Ochratoxin A induces liver inflammation: involvement of intestinal microbiota[J]. Micro-biome,2019, (1): 151.
    [16] Rivas R, Velázquez E, Willems A, et al. A new species of Devosia that forms a unique nitrogen - fixing root - nodule symbiosis with the aquatic legume Neptunia natans (L. f. ) druce[J]. Applied and Environmental Microbiology, 2002, 68(11): 5217 – 5222. doi: 10.1128/AEM.68.11.5217-5222.2002
    [17] Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high - resolution sample inference from illumina amplicon data[J]. Nature Methods, 2016, 13(7): 581 – 583. doi: 10.1038/nmeth.3869
    [18] Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker - gene amplicon sequences with QIIME 2’s q2 - feature - classifier plugin[J]. Microbiome, 2018, 6(1): 90. doi: 10.1186/s40168-018-0470-z
    [19] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA - seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [20] Mandal S, van Treuren W, White RA, et al. Analysis of composi-tion of microbiomes: a novel method for studying microbial composition[J]. Microbial Ecology in Health and Disease, 2015, 26: 27663.
    [21] Vázquez-Baeza Y, Pirrung M, Gonzalez A, et al. EMPeror: a tool for visualizing high - throughput microbial community data[J]. GigaScience, 2013, 2(1): 16. doi: 10.1186/2047-217X-2-16
    [22] 郑光美. 中国鸟类分类与分布名录[M]. 3版. 北京: 科学出版社, 2017: 1 – 492.
    [23] 任氢欣, 曾齐, 张必弦, 等. 基于高通量测序的大豆根际真菌群落动态变化分析[J]. 分子植物育种, 2021, 19(14): 4836 – 4845.
    [24] 张玲豫, 齐雅柯, 焦健, 等. 河西走廊沙地芦苇(Phragmites australis)根际土壤微生物群落多样性[J]. 中国沙漠, 2021, 41(6): 1 – 9.
    [25] 张燕林, 黄彩凤, 包明琢, 等. 生物炭及其老化对杉木林土壤养分含量和微生物群落组成影响的室内模拟[J]. 林业科学, 2021, 57(6): 169 – 179. doi: 10.11707/j.1001-7488.20210619
    [26] 张仲富, 喻庆国, 王行, 等. 植物群落和土壤理化性质对碧塔海湿地土壤细菌群落的影响[J]. 应用生态学报, 2021, 32(6): 2199 – 2208.
    [27] Zhao GH, Zhou LZ, Dong YQ, et al. The gut microbiome of hooded cranes (Grus monacha) wintering at Shengjin Lake, China[J]. Microbiology Open, 2017, 6(3): e00447. doi: 10.1002/mbo3.447
    [28] 祝令伟, 景洁, 梁冰, 等. 野生水鸟感染霍乱弧菌和沙门菌等病原菌的分离和鉴定[J]. 中国人兽共患病学报, 2019, 35(3): 212 – 215, 222.
    [29] Greig J, Rajić A, Young I, et al. A scoping review of the role of wildlife in the transmission of bacterial pathogens and antimicrobial resistance to the food chain[J]. Zoonoses and Public Health, 2015, 62(4): 269 – 284. doi: 10.1111/zph.12147
    [30] Morens DM, Fauci AS. Emerging pandemic diseases: how we got to COVID - 19[J]. Cell, 2020, 182(5): 1077 – 1092. doi: 10.1016/j.cell.2020.08.021
    [31] Weber TP, Stilianakis NI. Ecologic immunology of avian influenza (H5N1) in migratory birds[J]. Emerging Infectious Diseases, 2007, 13(8): 1139 – 1143. doi: 10.3201/eid1308.070319
    [32] Zhao N, Wang SP, Li HY, et al. Influence of novel highly pathogenic avian influenza A (H5N1) virus infection on migrating whooper swans fecal microbiota[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 46. doi: 10.3389/fcimb.2018.00046
    [33] Turan N, Ozsemir C, Yilmaz A, et al. Identification of Newcastle disease virus subgenotype VII. 2 in wild birds in Turkey[J]. BMC Veterinary Research, 2020, 16(1): 277. doi: 10.1186/s12917-020-02503-3
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  24
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 网络出版日期:  2022-12-24
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回