高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗生素暴露与肥胖关系研究进展

初蕾 苏德奇 戴江红

初蕾, 苏德奇, 戴江红. 抗生素暴露与肥胖关系研究进展[J]. 中国公共卫生. doi: 10.11847/zgggws1137759
引用本文: 初蕾, 苏德奇, 戴江红. 抗生素暴露与肥胖关系研究进展[J]. 中国公共卫生. doi: 10.11847/zgggws1137759
CHU Lei, SU De-qi, DAI Jiang-hong. Association of antibiotic exposure with obesity: a review on research progress[J]. Chinese Journal of Public Health. doi: 10.11847/zgggws1137759
Citation: CHU Lei, SU De-qi, DAI Jiang-hong. Association of antibiotic exposure with obesity: a review on research progress[J]. Chinese Journal of Public Health. doi: 10.11847/zgggws1137759

抗生素暴露与肥胖关系研究进展

doi: 10.11847/zgggws1137759
基金项目: 国家自然科学基金(82160640);国家重点研发计划(2017YFC0907203);新疆维吾尔自治区研究生创新基金(XJ2020G180)
详细信息
    作者简介:

    初蕾(1990 – ),女,河北唐山人,硕士在读,研究方向:慢性病流行病学

    通讯作者:

    戴江红,E-mail:epi102@sina.com

  • 中图分类号: R 181.3+5

Association of antibiotic exposure with obesity: a review on research progress

  • 摘要: 抗生素常被用于治疗人与动物的疾病,残留在环境和食物中的抗生素可通过食物和饮水等途径暴露,被摄入到人体中。作为一种新型环境污染物,它与肥胖症密切相关,进而影响人类的健康,对公共安全造成威胁。本文旨在综述抗生素的暴露及途径、抗生素与肥胖的关系进而影响人群健康的研究进展,从而为抗生素影响人群健康进行早期干预提供科学依据。
  • [1] Nathan C, Cars O. Antibiotic resistance – problems, progress, and prospects[J]. The New England Journal of Medicine, 2014, 371(19): 1761 – 1763. doi: 10.1056/NEJMp1408040
    [2] Hanna N, Sun P, Sun Q, et al. Presence of antibiotic residues in various environmental compartments of Shandong Province in eastern China: its potential for resistance development and ecological and human risk[J]. Environment International, 2018, 114: 131 – 142. doi: 10.1016/j.envint.2018.02.003
    [3] Browne AJ, Chipeta MG, Haines-Woodhouse G, et al. Global antibiotic consumption and usage in humans, 2000 – 18: a spatial modelling study[J]. The Lancet Planetary Health, 2021, 5(12): e893 – e904. doi: 10.1016/S2542-5196(21)00280-1
    [4] Huang FY, An ZY, Moran MJ, et al. Recognition of typical antibiotic residues in environmental media related to groundwater in china (2009 – 2019)[J]. Journal of Hazardous Materials, 2020, 399: 122813. doi: 10.1016/j.jhazmat.2020.122813
    [5] Zhang QQ, Ying GG, Pan CG, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resi-stance[J]. Environmental Science and Technology, 2015, 49(11): 6772 – 6782. doi: 10.1021/acs.est.5b00729
    [6] 刘国卿. 药理学[M]·2版. 北京: 中国医药科技出版社, 2006: 442.
    [7] Yamaguchi T, Okihashi M, Harada K, et al. Antibiotic residue monitoring results for pork, chicken, and beef samples in vietnam in 2012 – 2013[J]. Journal of Agricultural and Food Chemistry, 2015, 63(21): 5141 – 5145. doi: 10.1021/jf505254y
    [8] 杨沂嫡, 梁永兵, 李君文, 等. 我国生活饮用水抗生素耐药基因污染现状及其检测技术研究进展[J]. 中国公共卫生, 2021, 37(10): 1575 – 1579. doi: 10.11847/zgggws1132173
    [9] Li N, Ho KWK, Ying GG, et al. Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong[J]. Environment International, 2017, 108: 246 – 252. doi: 10.1016/j.envint.2017.08.014
    [10] 赵军杰, 程林丽, 栾业辉, 等. 四环素的毒性预测与验证[J]. 饲料工业, 2021, 42(14): 55 – 59.
    [11] 王冉. 饲料药物添加剂金霉素的环境行为及生态毒性研究[D]. 南京: 南京农业大学, 2010.
    [12] Wu JJ, Zhu YY, Xue F, et al. Recent trends in SELEX technique and its application to food safety monitoring[J]. Microchimica Acta, 2014, 181(5/6): 479 – 491.
    [13] Schulz J, Kemper N, Hartung J, et al. Analysis of fluoroquinolones in dusts from intensive livestock farming and the co - occurrence of fluoroquinolone - resistant Escherichia coli[J]. Scientific Reports, 2019, 9(1): 5117. doi: 10.1038/s41598-019-41528-z
    [14] Daneman N, Chateau D, Dahl M, et al. Fluoroquinolone use for uncomplicated urinary tract infections in women: A retrospective cohort study[J]. Clinical Microbiology and Infection, 2020, 26(5): 613 – 618. doi: 10.1016/j.cmi.2019.10.016
    [15] Jednačak T, Mikulandra I, Novak P. Advanced methods for studying structure and interactions of macrolide antibiotics[J]. International Journal of Molecular Sciences, 2020, 21(20): 7799. doi: 10.3390/ijms21207799
    [16] Zhang MQ, Chen B, Zhang JP, et al. Liver toxicity of macrolide antibiotics in zebrafish[J]. Toxicology, 2020, 441: 152501. doi: 10.1016/j.tox.2020.152501
    [17] Bílková Z, Malá J, Hrich K. Fate and behaviour of veterinary sulphonamides under denitrifying conditions[J]. Science of the Total Environment, 2019, 695: 133824. doi: 10.1016/j.scitotenv.2019.133824
    [18] Armentano A, Summa S, Lo Magro S, et al. Rapid method for the quantification of 13 sulphonamides in milk by conventional high - performance liquid chromatography with diode array ultraviolet detection using a column packed with core - shell particles[J]. Journal of Chromatography A, 2018, 1531: 46 – 52. doi: 10.1016/j.chroma.2017.11.015
    [19] Albert E, Biksi I, Nemet Z, et al. Outbreaks of a methicillin - resistant Staphylococcus aureus clone ST398 - t011 in a Hungarian equine clinic: emergence of rifampicin and chloramphenicol resistance after treatment with these antibiotics[J]. Microbial Drug Resistance, 2019, 25(8): 1219 – 1226. doi: 10.1089/mdr.2018.0384
    [20] 张恒, 汤慕瑾, 吕敬章, 等. 豆芽中氯霉素残留监测结果与分析[J]. 现代农业科学, 2009(8): 14 – 16.
    [21] 张叶. 临床常见抗生素不合理使用现状分析及对策[J]. 教育教学论坛, 2020(34): 117 – 118.
    [22] 郑冰, 苏淑娴. 抗生素类药物残留的现状、危害及对策[J]. 分析试验室, 2010, 29(S1): 285 – 288.
    [23] Wang HX, Ren LS, Yu X, et al. Antibiotic residues in meat, milk and aquatic products in shanghai and human exposure assess-ment[J]. Food Control, 2017, 80: 217 – 225. doi: 10.1016/j.foodcont.2017.04.034
    [24] 谈笑. 北京市超市冷鲜畜肉中抗生素耐药菌分布及分子特征研究[D]. 武汉: 武汉轻工大学, 2017.
    [25] 张利锋, 杨瑞春, 袁鹏, 等. 河南省市售鸡肉和鸡蛋中抗生素残留及膳食暴露风险评估[J]. 现代预防医学, 2021, 48(12): 2189 – 2193.
    [26] 刘少颖, 黄希汇, 胡柯君, 等. 杭州市动物性食品中喹诺酮类抗生素残留水平及安全性评价[J]. 中国卫生检验杂志, 2018, 28(18): 2280 – 2282, 2285.
    [27] 夏冰芝. 2019 — 2020年酒泉市猪肉及内脏组织喹诺酮类抗生素残留情况调查及分析[J]. 云南畜牧兽医, 2021(2): 38 – 39. doi: 10.3969/j.issn.1005-1341.2021.02.016
    [28] 巫明毫, 沙菁洲, 侯永斌, 等. 四川典型水域表层水体抗生素残留特征与风险评估[J]. 中国测试, 2020, 46(10): 78 – 85. doi: 10.11857/j.issn.1674-5124.2020060152
    [29] 曾若菡, 齐钊, 张腾云, 等. 海南东部海水养殖区抗生素残留的生态风险评估[J]. 热带生物学报, 2021, 12(1): 41 – 48.
    [30] 周雅靓, 沙菁洲, 巫明毫, 等. 四川抗生素制药企业废水抗生素残留特征与风险评估[J]. 中国抗生素杂志, 2021, 46(4): 346 – 352. doi: 10.3969/j.issn.1001-8689.2021.04.014
    [31] 魏晓东, 刘叶新, 周志洪, 等. 广州典型排放源废水中抗生素的污染特征和去除效果[J]. 华南师范大学学报(自然科学版), 2018, 50(1): 11 – 20.
    [32] Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980 – 2013: a systematic analysis for the global burden of disease study 2013[J]. The Lancet, 2014, 384(9945): 766 – 781. doi: 10.1016/S0140-6736(14)60460-8
    [33] Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, et al. Gut microbiota disturbance during antibiotic therapy: a multi - omic approach[J]. Gut, 2013, 62(11): 1591 – 1601. doi: 10.1136/gutjnl-2012-303184
    [34] 王莉, 秦松, 邹志强. 肠道菌群与肥胖发生机制及干预研究进展[J]. 国际流行病学传染病学杂志, 2019, 46(1): 85 – 88. doi: 10.3760/cma.j.issn.1673-4149.2019.01.020
    [35] Stark CM, Susi A, Emerick J, et al. Antibiotic and acid - suppression medications during early childhood are associated with obesity[J]. Gut, 2019, 68(1): 62 – 69. doi: 10.1136/gutjnl-2017-314971
    [36] Rasmussen SH, Shrestha S, Bjerregaard LG, et al. Antibiotic exposure in early life and childhood overweight and obesity: a systematic review and meta - analysis[J]. Diabetes, Obesity and Metabolism, 2018, 20(6): 1508 – 1514. doi: 10.1111/dom.13230
    [37] Miller SA, Wu RKS, Oremus M. The association between antibiotic use in infancy and childhood overweight or obesity: a systematic review and meta - analysis[J]. Obesity Reviews, 2018, 19(11): 1463 – 1475. doi: 10.1111/obr.12717
    [38] Rifas-Shiman SL, Bailey LC, Lunsford D, et al. Early life antibiotic prescriptions and weight outcomes in children 10 years of age[J]. Academic Pediatrics, 2021, 21(2): 297 – 303. doi: 10.1016/j.acap.2020.10.016
    [39] Leong KSW, McLay J, Derraik JGB, et al. Associations of prenatal and childhood antibiotic exposure with obesity at age 4 years[J]. JAMA Network Open, 2020, 3(1): e1919681. doi: 10.1001/jamanetworkopen.2019.19681
    [40] Mueller NT, Whyatt R, Hoepner L, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity[J]. International Journal of Obesity, 2015, 39(4): 665 – 670. doi: 10.1038/ijo.2014.180
    [41] Li DK, Chen H, Ferber J, et al. Maternal infection and antibiotic use in pregnancy and the risk of childhood obesity in offspring: a birth cohort study[J]. International Journal of Obesity, 2020, 44(4): 771 – 780. doi: 10.1038/s41366-019-0501-2
    [42] Schulfer AF, Schluter J, Zhang YL, et al. The impact of early - life sub - therapeutic antibiotic treatment (STAT) on excessive weight is robust despite transfer of intestinal microbes[J]. The ISME Journal, 2019, 13(5): 1280 – 1292. doi: 10.1038/s41396-019-0349-4
    [43] Li R, Wang HX, Shi QF, et al. Effects of oral florfenicol and azithromycin on gut microbiota and adipogenesis in mice[J]. PLoS One, 2017, 12(7): e0181690. doi: 10.1371/journal.pone.0181690
    [44] Scott FI, Horton DB, Mamtani R, et al. Administration of antibiotics to children before age 2 years increases risk for child-hood obesity[J]. Gastroenterology, 2016, 151(1): 120 – 129.e5. doi: 10.1053/j.gastro.2016.03.006
    [45] Edmonson MB, Eickhoff JC. Weight gain and obesity in infants and young children exposed to prolonged antibiotic prophylaxis[J]. JAMA Pediatrics, 2017, 171(2): 150 – 156. doi: 10.1001/jamapediatrics.2016.3349
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  14
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 网络出版日期:  2022-08-31

目录

    /

    返回文章
    返回