高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六价铬致肺癌作用机制研究进展

朱瑞瑞 李宁宁 贾光 余善法

朱瑞瑞, 李宁宁, 贾光, 余善法. 六价铬致肺癌作用机制研究进展[J]. 中国公共卫生, 2023, 39(2): 181-185. doi: 10.11847/zgggws1138586
引用本文: 朱瑞瑞, 李宁宁, 贾光, 余善法. 六价铬致肺癌作用机制研究进展[J]. 中国公共卫生, 2023, 39(2): 181-185. doi: 10.11847/zgggws1138586
ZHU Rui-rui, LI Ning-ning, JIA Guang, . Progress in researches on pulmonary carcinogenicity of hexavalent chromium and its mechanism: a review[J]. Chinese Journal of Public Health, 2023, 39(2): 181-185. doi: 10.11847/zgggws1138586
Citation: ZHU Rui-rui, LI Ning-ning, JIA Guang, . Progress in researches on pulmonary carcinogenicity of hexavalent chromium and its mechanism: a review[J]. Chinese Journal of Public Health, 2023, 39(2): 181-185. doi: 10.11847/zgggws1138586

六价铬致肺癌作用机制研究进展

doi: 10.11847/zgggws1138586
基金项目: 国家自然科学基金项目 – 河南联合基金重点支持项目(U2004202)
详细信息
    作者简介:

    朱瑞瑞(1996 – ),女,河南人,硕士在读,研究方向:铬酸盐健康影响

    通信作者:

    余善法,E-mail:chinastress@sina.com

  • 中图分类号: R 994.6

Progress in researches on pulmonary carcinogenicity of hexavalent chromium and its mechanism: a review

  • 摘要: 六价铬 [hexavalent chromium,Cr(VI)] 是通过将矿物中的三价铬在有氧条件下加热得到 ,其广泛应用在工业生产中,研究表明,Cr(VI)可诱导机体氧化应激、DNA损伤和染色体不稳定,产生细胞毒性并造成遗传损伤,增加肺癌、鼻咽癌、肝和肾的毒性损伤、心脏功能障碍、过敏性接触性皮炎或铬溃疡等相关疾病的风险,长期职业接触Cr(VI)可导致肺癌的发生。近年,六价铬化合物先后被列入我国《优先控制化学品名录(第一批)》和《有毒有害水污染物名录(第一批)》的危险化学物质。本文就近年的相关文献报道,从Cr(VI)的细胞毒性、Cr(VI)暴露的动物和接触Cr(VI)的人群3个方面概述Cr(VI)诱发肺癌的潜在分子机制,为后续的相关研究提供参考。
  • [1] International Agency for Research on Cancer. Chromium, nickel and welding[J]. IARC Monographs on the Evaluation of Carcino-genic Risks to Humans, 1990, 49: 1 – 648.
    [2] Salama A, Hegazy R, Hassan A. Intranasal chromium induces acute brain and lung injuries in rats: assessment of different potential hazardous effects of environmental and occupational exposure to chromium and introduction of a novel pharmacological and toxicological animal model[J]. PLoS One, 2016, 11(12): e0168688. doi: 10.1371/journal.pone.0168688
    [3] 方利强, 秦光明. 低剂量铬暴露工人铬鼻病调查分析[J]. 环境与职业医学, 2016, 33(2): 160 – 162. doi: 10.13213/j.cnki.jeom.2016.15266
    [4] Zhu QC, Wang BX, Ling BY, et al. Acute renal failure due to acute chromium poisoning after chromic acid burns[J]. The American Journal of Emergency Medicine, 2020, 38(4): 834 – 836. doi: 10.1016/j.ajem.2019.158453
    [5] Yang QY, Han B, Xue JD, et al. Hexavalent chromium induces mitochondrial dynamics disorder in rat liver by inhibiting AMPK/PGC-1α signaling pathway[J]. Environmental Pollution, 2020, 265: 114855. doi: 10.1016/j.envpol.2020.114855
    [6] Chappell GA, Wikoff DS, Thompson CM. Assessment of mechanistic data for hexavalent chromium-induced rodent in-testinal cancer using the key characteristics of carcinogens[J]. Toxicological Sciences, 2021, 180(1): 38 – 50. doi: 10.1093/toxsci/kfaa187
    [7] Yang DQ, Yang QY, Fu N, et al. Hexavalent chromium induced heart dysfunction via Sesn2-mediated impairment of mitochondrial function and energy supply[J]. Chemosphere, 2021, 264: 128547. doi: 10.1016/j.chemosphere.2020.128547
    [8] Shobana N, Kumar MK, Navin AK, et al. Prenatal exposure to excess chromium attenuates transcription factors regulating expression of androgen and follicle stimulating hormone receptors in Sertoli cells of prepuberal rats[J]. Chemico-Biological Inter-actions, 2020, 328: 109188. doi: 10.1016/j.cbi.2020.109188
    [9] Pathania YS, Budania A. Chrome ulcers: an occupational hazard[J]. Journal of the European Academy of Dermatology and Venere-ology, 2020, 34(4): e180 – e182.
    [10] Proctor DM, Suh M, Campleman SL, et al. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures[J]. Toxicology, 2014, 325: 160 – 179. doi: 10.1016/j.tox.2014.08.009
    [11] Proctor DM, Suh M, Mittal L, et al. Inhalation cancer risk assessment of hexavalent chromium based on updated mortality for Painesville chromate production workers[J]. Journal of Exposure Science and Environmental Epidemiology, 2016, 26(2): 224 – 231. doi: 10.1038/jes.2015.77
    [12] Dai J, Ji YL, Wang W, et al. Loss of fructose-1, 6-bisphosphatase induces glycolysis and promotes apoptosis resistance of cancer stem-like cells: an important role in hexavalent chromium-induced carcinogenesis[J]. Toxicology and Applied Pharmacology, 2017, 331: 164 – 173. doi: 10.1016/j.taap.2017.06.014
    [13] Wang ZS, Lin HP, Li YF, et al. Chronic hexavalent chromium exposure induces cancer stem cell-like property and tumorigenesis by increasing c-Myc expression[J]. Toxicological Sciences, 2019, 172(2): 252 – 264. doi: 10.1093/toxsci/kfz196
    [14] Wang ZS, Wu JJ, Humphries B, et al. Upregulation of histone-lysine methyltransferases plays a causal role in hexavalent chromium-induced cancer stem cell-like property and cell transformation[J]. Toxicology and Applied Pharmacology, 2018, 342: 22 – 30. doi: 10.1016/j.taap.2018.01.022
    [15] He J, Qian X, Carpenter R, et al. Repression of miR-143 mediates Cr(VI)-induced tumor angiogenesis via IGF-IR/IRS1/ERK/IL-8 pathway[J]. Toxicological Sciences, 2013, 134(1): 26 – 38. doi: 10.1093/toxsci/kft101
    [16] Clementino M, Xie J, Yang P, et al. A positive feedback loop between c-Myc upregulation, glycolytic shift, and histone acetyla-tion enhances cancer stem cell-like property and tumorigenicity of Cr(VI)-transformed cells[J]. Toxicological Sciences, 2020, 177(1): 71 – 83. doi: 10.1093/toxsci/kfaa086
    [17] Ding SZ, Yang YX, Li XL, et al. Epithelial-mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells[J]. Toxicology and Applied Pharmacology, 2013, 269(1): 61 – 71. doi: 10.1016/j.taap.2013.03.006
    [18] Chen ZH, Zhong JC, Ren XH, et al. Involvement of a novel regulatory cascade consisting of SET-H3K18ac/H3K27ac-53BP1 in Cr(VI)-induced malignant transformation of 16HBE cells[J]. Toxicology Letters, 2021, 339: 70 – 77. doi: 10.1016/j.toxlet.2020.12.017
    [19] Pratheeshkumar P, Son YO, Divya SP, et al. Hexavalent chromium induces malignant transformation of human lung bronchial epithelial cells via ROS-dependent activation of miR-21-PDCD4 signaling[J]. Oncotarget, 2016, 7(32): 51193 – 51210. doi: 10.18632/oncotarget.9967
    [20] Ganapathy S, Li P, Lafontant J, et al. Chromium IV exposure, via Src/Ras signaling, promotes cell transformation[J]. Molecular Carcinogenesis, 2017, 56(7): 1808 – 1815. doi: 10.1002/mc.22639
    [21] Huang JP, Wu G, Zeng R, et al. Chromium contributes to human bronchial epithelial cell carcinogenesis by activating Gli2 and inhibit-ing autophagy[J]. Toxicology Research, 2017, 6(3): 324 – 332. doi: 10.1039/C6TX00372A
    [22] Li PC, Zhang XR, Murphy AJ, et al. Downregulation of hedgehog-interacting protein (HHIP) contributes to hexavalent chromium-induced malignant transformation of human bronchial epithelial cells[J]. Carcinogenesis, 2021, 42(1): 136 – 147. doi: 10.1093/carcin/bgaa085
    [23] Qin Q, Xie H, Wise SS, et al. Homologous recombination repair signaling in chemical carcinogenesis: prolonged particulate hexa-valent chromium exposure suppresses the Rad51 response in human lung cells[J]. Toxicological Sciences, 2014, 142(1): 117 – 125. doi: 10.1093/toxsci/kfu175
    [24] Speer RM, Toyoda JH, Croom-Perez TJ, et al. Particulate hexavalent chromium inhibits E2F1 leading to reduced RAD51 nuclear foci formation in human lung cells[J]. Toxicological Sciences, 2021, 181(1): 35 – 46. doi: 10.1093/toxsci/kfab019
    [25] O'Brien T, Mandel HG, Pritchard DE, et al. Critical role of chromium (Cr)-DNA interactions in the formation of Cr-induced polymerase arresting lesions[J]. Biochemistry, 2002, 41(41): 12529 – 12537. doi: 10.1021/bi020452j
    [26] Quievryn G, Messer J, Zhitkovich A. Carcinogenic chromium(VI) induces cross-linking of vitamin C to DNA in vitro and in human lung A549 cells[J]. Biochemistry, 2002, 41(9): 3156 – 3167. doi: 10.1021/bi011942z
    [27] Brooks B, O'Brien TJ, Ceryak S, et al. Excision repair is required for genotoxin-induced mutagenesis in mammalian cells[J]. Carcinogenesis, 2008, 29(5): 1064 – 1069. doi: 10.1093/carcin/bgn058
    [28] Peterson-Roth E, Reynolds M, Quievryn G, et al. Mismatch repair proteins are activators of toxic responses to chromium-DNA damage[J]. Molecular and Cellular Biology, 2005, 25(9): 3596 – 3607. doi: 10.1128/MCB.25.9.3596-3607.2005
    [29] Browning CL, Qin Q, Kelly DF, et al. Prolonged particulate hexavalent chromium exposure suppresses homologous recombi-nation repair in human lung cells[J]. Toxicological Sciences, 2016, 153(1): 70 – 78. doi: 10.1093/toxsci/kfw103
    [30] Karri ND, Xie H, Wise JP. Chronic exposure to particulate hexavalent chromium alters Cdc20 protein localization, interactions and expression[J]. Journal of Carcinogenesis and Mutagenesis, 2013, 4(2): 1000140.
    [31] Chen DQ, Kluz T, Fang L, et al. Hexavalent chromium Cr(VI) down-regulates acetylation of histone H4 at lysine 16 through induction of stressor protein Nupr1[J]. PLoS One, 2016, 11(6): e0157317. doi: 10.1371/journal.pone.0157317
    [32] 卢维雪. Cr(VI)诱导致DNA损伤中抑制53BP1的相关组蛋白调控机制[D]. 湘潭: 湘潭大学, 2018.
    [33] Ge H, Li ZG, Jiang LP, et al. Cr (VI) induces crosstalk between apoptosis and autophagy through endoplasmic reticulum stress in A549 cells[J]. Chemico-Biological Interactions, 2019, 298: 35 – 42. doi: 10.1016/j.cbi.2018.10.024
    [34] Yang F, Zhao L, Mei D, et al. HMGA2 plays an important role in Cr (VI)-induced autophagy[J]. International Journal of Cancer, 2017, 141(5): 986 – 997. doi: 10.1002/ijc.30789
    [35] Gao ZY, Dlamini MB, Ge H, et al. ATF4-mediated autophagy-dependent glycolysis plays an important role in attenuating apoptosis induced by Cr (VI) in A549 cells[J]. Toxicology Letters, 2020, 331: 178 – 187. doi: 10.1016/j.toxlet.2020.06.015
    [36] Jimenez-Sanchez M, Menzies FM, Chang YY, et al. The Hedgehog signalling pathway regulates autophagy[J]. Nature Communica-tions, 2012, 3(1): 1200. doi: 10.1038/ncomms2212
    [37] Gao ZY, Mei JJ, Yan XN, et al. Cr(VI) induced mitophagy via the interaction of HMGA2 and PARK2[J]. Toxicology Letters, 2020, 333: 261 – 268. doi: 10.1016/j.toxlet.2020.08.012
    [38] Karaulov AV, Renieri EA, Smolyagin AI, et al. Long-term effects of chromium on morphological and immunological parameters of Wistar rats[J]. Food and Chemical Toxicology, 2019, 133: 110748. doi: 10.1016/j.fct.2019.110748
    [39] Karaulov AV, Smolyagin AI, Mikhailova IV, et al. Assessment of the combined effects of chromium and benzene on the rat neuroendocrine and immune systems[J]. Environmental Research, 2022, 207: 112096. doi: 10.1016/j.envres.2021.112096
    [40] Ma Y, Li SW, Ye SZ, et al. Hexavalent chromium inhibits the for-mation of neutrophil extracellular traps and promotes the apoptosis of neutrophils via AMPK signaling pathway[J]. Ecotoxicology and Environmental Safety, 2021, 223: 112614. doi: 10.1016/j.ecoenv.2021.112614
    [41] Song YS, Wang TJ, Pu J, et al. Multi-element distribution profile in Sprague-Dawley rats: effects of intratracheal instillation of Cr(VI) and Zn intervention[J]. Toxicology Letters, 2014, 226(2): 198 – 205. doi: 10.1016/j.toxlet.2014.02.008
    [42] Zhao L, Song YS, Pu J, et al. Effects of repeated Cr(VI) intratracheal instillation on club (Clara) cells and activation of nuclear factor-kappa B pathway via oxidative stress[J]. Toxicology Letters, 2014, 231(1): 72 – 81. doi: 10.1016/j.toxlet.2014.09.011
    [43] He XQ, Lin GX, Chen MG, et al. Protection against chromium (VI)-induced oxidative stress and apoptosis by Nrf2. Recruiting Nrf2 into the nucleus and disrupting the nuclear Nrf2/Keap1 association[J]. Toxicological Sciences, 2007, 98(1): 298 – 309. doi: 10.1093/toxsci/kfm081
    [44] Izzotti A, Cartiglia C, Balansky R, et al. Selective induction of gene expression in rat lung by hexavalent chromium[J]. Molecular Carcinogenesis, 2002, 35(2): 75 – 84. doi: 10.1002/mc.10077
    [45] Hu GP, Li P, Cui XX, et al. Cr(VI)-induced methylation and down-regulation of DNA repair genes and its association with markers of genetic damage in workers and 16HBE cells[J]. Environmental Pollution, 2018, 238: 833 – 843. doi: 10.1016/j.envpol.2018.03.046
    [46] Tsuboi M, Kondo K, Soejima S, et al. Chromate exposure induces DNA hypermethylation of the mismatch repair gene MLH1 in lung cancer[J]. Molecular Carcinogenesis, 2020, 59(1): 24 – 31. doi: 10.1002/mc.23125
    [47] Jia JL, Li T, Yao CJ, et al. Circulating differential miRNAs profiling and expression in hexavalent chromium exposed electroplating workers[J]. Chemosphere, 2020, 260: 127546. doi: 10.1016/j.chemosphere.2020.127546
    [48] Li Y, Li P, Yu SF, et al. miR-3940-5p associated with genetic damage in workers exposed to hexavalent chromium[J]. Toxicology Letters, 2014, 229(1): 319 – 326. doi: 10.1016/j.toxlet.2014.06.033
    [49] Baszuk P, Janasik B, Pietrzak S, et al. Lung cancer occurrence-correlation with serum chromium levels and genotypes[J]. Biological Trace Element Research, 2021, 199(4): 1228 – 1236. doi: 10.1007/s12011-020-02240-6
    [50] Gibb H, Wang J, O'Leary K, et al. The effect of age on the relative risk of lung cancer mortality in a cohort of chromium production workers[J]. American Journal of Industrial Medicine, 2020, 63(9): 774 – 778. doi: 10.1002/ajim.23152
    [51] Halasova E, Matakova T, Skerenova M, et al. Polymorphisms of selected DNA repair genes and lung cancer in chromium exposure[M]//Pokorski M. Advances in Respiratory Cancerogenesis. Cham: Springer, 2016: 17 – 22.
    [52] Sarlinova M, Majerova L, Matakova T, et al. Polymorphisms of DNA repair genes and lung cancer in chromium exposure[M]//Pokorski M. Lung Cancer and Autoimmune Disorders. Cham: Springer, 2015: 1 – 8.
  • 加载中
计量
  • 文章访问数:  284
  • HTML全文浏览量:  105
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 接收日期:  2022-03-22
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-02-10

目录

    /

    返回文章
    返回