高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿尔茨海默病早期诊断技术前沿概述

罗强 罗雅楠 冯娜娜 李清扬 郑晓瑛

罗强, 罗雅楠, 冯娜娜, 李清扬, 郑晓瑛. 阿尔茨海默病早期诊断技术前沿概述[J]. 中国公共卫生, 2023, 39(3): 394-399. doi: 10.11847/zgggws1138613
引用本文: 罗强, 罗雅楠, 冯娜娜, 李清扬, 郑晓瑛. 阿尔茨海默病早期诊断技术前沿概述[J]. 中国公共卫生, 2023, 39(3): 394-399. doi: 10.11847/zgggws1138613
LUO Qiang, LUO Ya-nan, FENG Na-na, . Advances in early diagnosis of Alzheimer′s disease: an overview[J]. Chinese Journal of Public Health, 2023, 39(3): 394-399. doi: 10.11847/zgggws1138613
Citation: LUO Qiang, LUO Ya-nan, FENG Na-na, . Advances in early diagnosis of Alzheimer′s disease: an overview[J]. Chinese Journal of Public Health, 2023, 39(3): 394-399. doi: 10.11847/zgggws1138613

阿尔茨海默病早期诊断技术前沿概述

doi: 10.11847/zgggws1138613
基金项目: 国家自然科学基金(81873909);上海市自然科学基金(20ZR1404900);国家社会科学基金(ZD21&ZD187,21CRK014)
详细信息
    作者简介:

    罗强(1981 – ),男,四川遂宁人,研究员,博士,研究方向:计算与脑科学前沿交叉研究

    通信作者:

    郑晓瑛,E-mail:zhengxiaoying@sph.pumc.edu.cn

  • (罗雅楠为本文并列第一作者)
  • 中图分类号: R 749.16

Advances in early diagnosis of Alzheimer′s disease: an overview

  • 摘要: 阿尔茨海默病(Alzheimer′s disease,AD)是老年人重大致残致死性疾病之一,早期诊断对于延缓阿尔茨海默病发展及其导致的功能损失具有极为重要的意义,是老年人群主动健康成功落地的关键。早诊对于延缓或者推迟AD病程非常关键,将直接服务于“健康老龄化”的战略需求。本文针对当前在AD预警或早期诊断方面相关前言技术进行回顾,通过综述体液标记物、血液标记物、认知标记物和数字标记物检测等早期诊断技术发展历程和前沿文献资料,为准确识别高风险人群、精准实施干预措施提供研究思路,为老年高致残疾病的早期诊断相关研究提供重要参考。
    1)  (罗雅楠为本文并列第一作者)
  • [1] World Health Organization. Global status report on the public health response to dementia[R]. Geneva: World Health Organiza-tion, 2021.
    [2] Jia LF, Quan MN, Fu Y, et al. Dementia in China: epidemiology, clinical management, and research advances[J]. The Lancet Neur-ology, 2020, 19(1): 81 – 92. doi: 10.1016/S1474-4422(19)30290-X
    [3] Golde TE, DeKosky ST, Galasko D. Alzheimer′s disease: the right drug, the right time[J]. Science, 2018, 362(6420): 1250 – 1251. doi: 10.1126/science.aau0437
    [4] Jack Jr CR, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer′s disease[J]. Alzheimer′s and Dementia, 2018, 14(4): 535 – 562. doi: 10.1016/j.jalz.2018.02.018
    [5] Arzheimer′s Association. 2022 Alzheimer′s disease facts and figures[J]. Alzheimer’s and Dementia, 2022, 18(4): 700 – 789. doi: 10.1002/alz.12638
    [6] Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. The Lancet, 2020, 396(10248): 413 – 446. doi: 10.1016/S0140-6736(20)30367-6
    [7] ALZFORUM. AlzBiomarker AD vs CTRL[EB/OL]. (2016 – 04 – 18)[2022 – 09 – 26]. https://www.alzforum.org/alzbiomarker/ad-vs-ctrl.
    [8] Janelidze S, Stomrud E, Smith R, et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer′s disease[J]. Nature Communications, 2020, 11(1): 1683. doi: 10.1038/s41467-020-15436-0
    [9] Barthélemy NR, Li Y, Joseph-Mathurin N, et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer′s disease[J]. Nature Medicine, 2020, 26(3): 398 – 407. doi: 10.1038/s41591-020-0781-z
    [10] Liu WL, Lin HW, He XJ, et al. Neurogranin as a cognitive bio-marker in cerebrospinal fluid and blood exosomes for Alzheimer′s disease and mild cognitive impairment[J]. Translational Psychiatry, 2020, 10(1): 125. doi: 10.1038/s41398-020-0801-2
    [11] Zhang H, Therriault J, Kang MS, et al. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer′s disease[J]. Alzheimer′s Research and Therapy, 2018, 10(1): 80. doi: 10.1186/s13195-018-0407-6
    [12] Simoes S, Neufeld JL, Triana-Baltzer G, et al. Tau and other proteins found in Alzheimer’s disease spinal fluid are linked to retromer-mediated endosomal traffic in mice and humans[J]. Science Translational Medicine, 2020, 12(571): eaba6334. doi: 10.1126/scitranslmed.aba6334
    [13] Mattsson N, Andreasson U, Persson S, et al. CSF biomarker variability in the Alzheimer′s Association quality control program[J]. Alzheimer′s and Dementia, 2013, 9(3): 251 – 261. doi: 10.1016/j.jalz.2013.01.010
    [14] Willemse EAJ, Tijms BM, Van Berckel BNM, et al. Comparing CSF amyloid-beta biomarker ratios for two automated immuno-assays, Elecsys and Lumipulse, with amyloid PET status[J]. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13(1): e12182.
    [15] Hansson O, Seibyl J, Stomrud E, et al. CSF biomarkers of Alzheimer′s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts[J]. Alzheimer’s and Dementia, 2018, 14(11): 1470 – 1481. doi: 10.1016/j.jalz.2018.01.010
    [16] Leitão MJ, Silva-Spínola A, Santana I, et al. Clinical validation of the Lumipulse G cerebrospinal fluid assays for routine diagnosis of Alzheimer′s disease[J]. Alzheimer′s Research and Therapy, 2019, 11(1): 91. doi: 10.1186/s13195-019-0550-8
    [17] Janelidze S, Pannee J, Mikulskis A, et al. Concordance between different amyloid immunoassays and visual amyloid positron emission tomographic assessment[J]. JAMA Neurology, 2017, 74(12): 1492 – 1501. doi: 10.1001/jamaneurol.2017.2814
    [18] Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer′s disease pathology[J]. Acta Neuropathologica, 2021, 141(5): 709 – 724. doi: 10.1007/s00401-021-02275-6
    [19] Janelidze S, Berron D, Smith R, et al. Associations of plasma phospho-Tau217 levels with tau positron emission tomography in early Alzheimer disease[J]. JAMA Neurology, 2021, 78(2): 149 – 156. doi: 10.1001/jamaneurol.2020.4201
    [20] Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neuro-degenerative disorders[J]. JAMA, 2020, 324(8): 772 – 781. doi: 10.1001/jama.2020.12134
    [21] Brickman AM, Manly JJ, Honig LS, et al. Plasma p-tau181, p-tau217, and other blood-based Alzheimer′s disease biomarkers in a multi-ethnic, community study[J]. Alzheimer′s and Dementia, 2021, 17(8): 1353 – 1364. doi: 10.1002/alz.12301
    [22] Janelidze S, Teunissen CE, Zetterberg H, et al. Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in Alzheimer disease[J]. JAMA Neurology, 2021, 78(11): 1375 – 1382. doi: 10.1001/jamaneurol.2021.3180
    [23] Ashton NJ, Janelidze S, Khleifat AA, et al. A multicentre validation study of the diagnostic value of plasma neurofilament light[J]. Nature Communications, 2021, 12(1): 3400. doi: 10.1038/s41467-021-23620-z
    [24] Jagust WJ, Landau SM. Temporal dynamics of β-amyloid accumula-tion in aging and Alzheimer disease[J]. Neurology, 2021, 96(9): e1347 – e1357. doi: 10.1212/WNL.0000000000011524
    [25] Villemagne VL, Doré V, Burnham SC, et al. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other condi-tions[J]. Nature Reviews Neurology, 2018, 14(4): 225 – 236. doi: 10.1038/nrneurol.2018.9
    [26] Uzuegbunam BC, Librizzi D, Yousefi BH. PET radiopharmaceuticals for Alzheimer′s disease and Parkinson′s disease diagnosis, the current and future landscape[J]. Molecules, 2020, 25(4): 977. doi: 10.3390/molecules25040977
    [27] Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study[J]. The Lancet Neurology, 2012, 11(8): 669 – 678. doi: 10.1016/S1474-4422(12)70142-4
    [28] Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer′s disease with Pittsburgh Compound-B[J]. Annals of Neurology, 2004, 55(3): 306 – 319. doi: 10.1002/ana.20009
    [29] Bourgeat P, Chételat G, Villemagne VL, et al. β-Amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia[J]. Neurology, 2010, 74(2): 121 – 127. doi: 10.1212/WNL.0b013e3181c918b5
    [30] Villemagne VL, Pike KE, Chételat G, et al. Longitudinal assess-ment of Aβ and cognition in aging and Alzheimer disease[J]. Annals of Neurology, 2011, 69(1): 181 – 192. doi: 10.1002/ana.22248
    [31] Jack Jr CR, Therneau TM, Weigand SD, et al. Prevalence of biologically vs clinically defined Alzheimer spectrum entities using the National Institute on Aging-Alzheimer’s Association research framework[J]. JAMA Neurology, 2019, 76(10): 1174 – 1183. doi: 10.1001/jamaneurol.2019.1971
    [32] Franzmeier N, Neitzel J, Rubinski A, et al. Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease[J]. Nature Communications, 2020, 11(1): 347. doi: 10.1038/s41467-019-14159-1
    [33] Joie RL, Visani AV, Baker SL, et al. Prospective longitudinal atrophy in Alzheimer′s disease correlates with the intensity and topography of baseline tau-PET[J]. Science Translational Medicine, 2020, 12(524): eaau5732. doi: 10.1126/scitranslmed.aau5732
    [34] Ossenkoppele R, Rabinovici GD, Smith R, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders[J]. JAMA, 2018, 320(11): 1151 – 1162. doi: 10.1001/jama.2018.12917
    [35] Lu M, Pontecorvo MJ, Devous Sr MD, et al. Aggregated tau measured by visual interpretation of flortaucipir positron emission tomography and the associated risk of clinical progression of mild cognitive impairment and Alzheimer disease: results from 2 phase III clinical trials[J]. JAMA Neurology, 2021, 78(4): 445 – 453. doi: 10.1001/jamaneurol.2020.5505
    [36] Wang WY, Yu JT, Liu Y, et al. Voxel-based meta-analysis of grey matter changes in Alzheimer′s disease[J]. Translational Neurode-generation, 2015, 4(1): 6. doi: 10.1186/s40035-015-0027-z
    [37] Apostolova LG, Dutton RA, Dinov ID, et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps[J]. Archives of Neurology, 2006, 63(5): 693 – 699. doi: 10.1001/archneur.63.5.693
    [38] Ferrarini L, Van Lew B, Reiber JHC, et al. Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study[J]. International Psychogeriatrics, 2014, 26(7): 1067 – 1081. doi: 10.1017/S1041610213002627
    [39] Iaccarino L, Sala A, Perani D, et al. Predicting long-term clinical stability in amyloid-positive subjects by FDG-PET[J]. Annals of Clinical and Translational Neurology, 2019, 6(6): 1113 – 1120. doi: 10.1002/acn3.782
    [40] Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer′s disease in persons homozygous for the ε4 allele for apolipoprotein E[J]. The New England Journal of Medicine, 1996, 334(12): 752 – 758. doi: 10.1056/NEJM199603213341202
    [41] Laforce Jr R, Tosun D, Ghosh P, et al. Parallel ICA of FDG-PET and PiB-PET in three conditions with underlying Alzheimer′s pathology[J]. NeuroImage:Clinical, 2014, 4: 508 – 516. doi: 10.1016/j.nicl.2014.03.005
    [42] Reiman EM, Chen KW, Alexander GE, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer′s dementia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(1): 284 – 289. doi: 10.1073/pnas.2635903100
    [43] Herholz K, Salmon E, Perani D, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET[J]. NeuroImage, 2002, 17(1): 302 – 316. doi: 10.1006/nimg.2002.1208
    [44] Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer′s disease: advances in genetics, pathophysiology, and therapeutic approaches[J]. The Lancet Neurology, 2021, 20(1): 68 – 80. doi: 10.1016/S1474-4422(20)30412-9
    [45] Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician[J]. Journal of Psychiatric Research, 1975, 12(3): 189 – 198. doi: 10.1016/0022-3956(75)90026-6
    [46] Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cog-nitive Assessment, MoCA: a brief screening tool for mild cognitive impairment[J]. Journal of the American Geriatrics Society, 2005, 53(4): 695 – 699. doi: 10.1111/j.1532-5415.2005.53221.x
    [47] Molnar FJ, Man-Son-Hing M, Fergusson D. Systematic review of measures of clinical significance employed in randomized controlled trials of drugs for dementia[J]. Journal of the American Geriatrics Society, 2009, 57(3): 536 – 546. doi: 10.1111/j.1532-5415.2008.02122.x
    [48] 王凤. 中文版罗兰通用痴呆症量表的信效度检验及其与MMSE测试性能的对比研究[D]. 湖州: 湖州师范学院, 2020.
    [49] Tsoi KKF, Chan JYC, Hirai HW, et al. Cognitive tests to detect dementia: a systematic review and meta-analysis[J]. JAMA Internal Medicine, 2015, 175(9): 1450 – 1458. doi: 10.1001/jamainternmed.2015.2152
    [50] Ranson JM, Kuźma E, Hamilton W, et al. Predictors of dementia misclassification when using brief cognitive assessments[J]. Neur-ology: Clinical Practice, 2019, 9(2): 109 – 117. doi: 10.1212/CPJ.0000000000000566
    [51] 中华医学会神经病学分会神经心理与行为神经病学学组. 常用神经心理认知评估量表临床应用专家共识[J]. 中华神经科杂志, 2019, 52(3): 166 – 176. doi: 10.3760/cma.j.issn.1006-7876.2019.03.002
    [52] Springate B, Fein D. Halstead-reitan neuropsychological test battery[M]//Volkmar FR. Encyclopedia of Autism Spectrum Disorders. Cham: Springer, 2021: 2301 – 2303.
    [53] Purisch AD. Misconceptions about the Luria-Nebraska neuropsy-chological battery[J]. NeuroRehabilitation, 2001, 16(4): 275 – 280. doi: 10.3233/NRE-2001-16412
    [54] Hodes RJ, Insel TR, Landis SC. The NIH toolbox: setting a standard for biomedical research[J]. Neurology, 2013, 80(11 Suppl 3): S1.
    [55] Barnett JH, Blackwell AD, Sahakian BJ, et al. The Paired Asso-ciates Learning (PAL) test: 30 years of CANTAB translational neuroscience from laboratory to bedside in dementia research[J]. Current Topics in Behavioral Neurosciences, 2016, 28: 449 – 474.
    [56] Chandler JM, Marsico M, Harper-Mozley L, et al. P3-111: cogni-tive assessment: discrimination of impairment and detection of decline in Alzheimer′s disease and mild cognitive impairment[J]. Alzheimer′s and Dementia, 2008, 4(4S): T551 – T552.
    [57] Mitchell J, Arnold R, Dawson K, et al. Outcome in subgroups of mild cognitive impairment (MCI) is highly predictable using a simple algorithm[J]. Journal of Neurology, 2009, 256(9): 1500 – 1509. doi: 10.1007/s00415-009-5152-0
    [58] Albers MW, Gilmore GC, Kaye J, et al. At the interface of sensory and motor dysfunctions and Alzheimer’s disease[J]. Alzheimer′s and Dementia, 2015, 11(1): 70 – 98. doi: 10.1016/j.jalz.2014.04.514
    [59] Tasaki S, Gaiteri C, Petyuk VA, et al. Genetic risk for Alzheimer′s dementia predicts motor deficits through multi-omic systems in older adults[J]. Translational Psychiatry, 2019, 9(1): 241. doi: 10.1038/s41398-019-0577-4
    [60] Lyons BE, Austin D, Seelye A, et al. Pervasive computing techn-ologies to continuously assess Alzheimer′s disease progression and intervention efficacy[J]. Frontiers in Aging Neuroscience, 2015, 7: 102.
    [61] Ellis RJ, Ng YS, Zhu SG, et al. A validated smartphone-based assessment of gait and gait variability in Parkinson′s disease[J]. PLoS One, 2015, 10(10): e0141694. doi: 10.1371/journal.pone.0141694
    [62] Buracchio T, Dodge HH, Howieson D, et al. The trajectory of gait speed preceding mild cognitive impairment[J]. Arch Neurology, 2010, 67(8): 980 – 986.
    [63] Case MA, Burwick HA, Volpp KG, et al. Accuracy of smartphone applications and wearable devices for tracking physical activity data[J]. JAMA, 2015, 313(6): 625 – 626. doi: 10.1001/jama.2014.17841
    [64] Dougherty RJ, Ramachandran J, Liu FY, et al. Association of walking energetics with amyloid beta status: findings from the Baltimore Longitudinal Study of Aging[J]. Alzheimer′s and Dementia, 2021, 13(1): e12228.
    [65] Stringer G, Couth S, Brown LJE, et al. Can you detect early dementia from an email? A proof of principle study of daily computer use to detect cognitive and functional decline[J]. International Journal of Geriatric Psychiatry, 2018, 33(7): 867 – 874. doi: 10.1002/gps.4863
    [66] Scinto LFM, Daffner KR, Dressler D, et al. A potential noninvasive neurobiological test for Alzheimer′s disease[J]. Science, 1994, 266(5187): 1051 – 1054. doi: 10.1126/science.7973660
    [67] Molitor RJ, Ko PC, Ally BA. Eye movements in Alzheimer′s disease[J]. Journal of Alzheimer′s Disease, 2015, 44(1): 1 – 12. doi: 10.3233/JAD-141173
    [68] Gills JL, Bott NT, Madero EN, et al. A short digital eye-tracking assessment predicts cognitive status among adults[J]. GeroScience, 2021, 43(1): 297 – 308. doi: 10.1007/s11357-020-00254-5
    [69] Nie J, Qiu Q, Phillips M, et al. Early diagnosis of mild cognitive impairment based on eye movement parameters in an aging Chinese population[J]. Frontiers in Aging Neuroscience, 2020, 12: 221. doi: 10.3389/fnagi.2020.00221
    [70] Chougule PS, Najjar RP, Finkelstein MT, et al. Light-induced pupillary responses in Alzheimer′s disease[J]. Frontiers in Neurology, 2019, 10: 360. doi: 10.3389/fneur.2019.00360
    [71] Peters JM, Hummel T, Kratzsch T, et al. Olfactory function in mild cognitive impairment and Alzheimer′s disease: an investigation using psychophysical and electrophysiological techniques[J]. American Journal of Psychiatry, 2003, 160(11): 1995 – 2002. doi: 10.1176/appi.ajp.160.11.1995
    [72] Schubert CR, Carmichael LL, Murphy C, et al. Olfaction and the 5-year incidence of cognitive impairment in an epidemiological study of older adults[J]. Journal of the American Geriatrics Society, 2008, 56(8): 1517 – 1521. doi: 10.1111/j.1532-5415.2008.01826.x
    [73] 陈超, 肖世富. 嗅觉障碍与阿尔茨海默病[J]. 中国现代神经疾病杂志, 2010, 10(2): 191 – 196. doi: 10.3969/j.issn.1672-6731.2010.02.011
    [74] Hummel T, Kobal G, Gudziol H, et al. Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3 000 subjects[J]. European Archives of Oto-Rhino-Laryngology, 2007, 264(3): 237 – 243. doi: 10.1007/s00405-006-0173-0
    [75] Woodward MR, Amrutkar CV, Shah HC, et al. Validation of olfactory deficit as a biomarker of Alzheimer disease[J]. Neurology Clinical Practice, 2017, 7(1): 5 – 14. doi: 10.1212/CPJ.0000000000000293
    [76] Doty RL, Marcus A, Lee WW. Development of the 12-item cross-cultural smell identification test (CC-SIT)[J]. The Laryngoscope, 1996, 106(3): 353 – 356. doi: 10.1097/00005537-199603000-00021
    [77] Woodward MR, Hafeez MU, Qi QY, et al. Odorant item specific olfactory identification deficit may differentiate Alzheimer disease from aging[J]. The American Journal of Geriatric Psychiatry, 2018, 26(8): 835 – 846. doi: 10.1016/j.jagp.2018.02.008
    [78] Kim J, Yon DK, Choi KY, et al. Novel diagnostic tools for identify-ing cognitive impairment using olfactory-stimulated functional near-infrared spectroscopy: patient-level, single-group, diagnostic trial[J]. Alzheimer’s Research and Therapy, 2022, 14(1): 39. doi: 10.1186/s13195-022-00978-w
    [79] Bliwise DL. Sleep disorders in Alzheimer′s disease and other dementias[J]. Clinical Cornerstone, 2004, 6 Suppl 1A: S16 – S28.
    [80] Lim ASP, Kowgier M, Yu L, et al. Sleep fragmentation and the risk of incident Alzheimer′s disease and cognitive decline in older persons[J]. Sleep, 2013, 36(7): 1027 – 1032. doi: 10.5665/sleep.2802
    [81] Lujan MR, Perez-Pozuelo I, Grandner MA. Past, present, and future of multisensory wearable technology to monitor sleep and circadian rhythms[J]. Frontiers in Digital Health, 2021, 3: 721919. doi: 10.3389/fdgth.2021.721919
    [82] Roberts DM, Schade MM, Mathew GM, et al. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography[J]. Sleep, 2020, 43(7): zsaa045. doi: 10.1093/sleep/zsaa045
    [83] Ong AA, Gillespie MB. Overview of smartphone applications for sleep analysis[J]. World Journal of Otorhinolaryngology-Head and Neck Surgery, 2016, 2(1): 45 – 49. doi: 10.1016/j.wjorl.2016.02.001
    [84] Tuominen J, Peltola K, Saaresranta T, et al. Sleep parameter assessment accuracy of a consumer home sleep monitoring ballistocardiograph beddit sleep tracker: a validation study[J]. Journal of Clinical Sleep Medicine, 2019, 15(3): 483 – 487. doi: 10.5664/jcsm.7682
    [85] Debellemaniere E, Chambon S, Pinaud C, et al. Performance of an ambulatory dry-EEG device for auditory closed-loop stimulation of sleep slow oscillations in the home environment[J]. Frontiers in Human Neuroscience, 2018, 12: 88. doi: 10.3389/fnhum.2018.00088
  • 加载中
计量
  • 文章访问数:  510
  • HTML全文浏览量:  208
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 接收日期:  2022-03-24
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回