高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全氟和多氟烷基化合物暴露对甲状腺功能影响研究进展

刘晨阳 王钜铃 王晓峰 徐沛维 金永堂

刘晨阳, 王钜铃, 王晓峰, 徐沛维, 金永堂. 全氟和多氟烷基化合物暴露对甲状腺功能影响研究进展[J]. 中国公共卫生, 2023, 39(5): 670-675. doi: 10.11847/zgggws1138744
引用本文: 刘晨阳, 王钜铃, 王晓峰, 徐沛维, 金永堂. 全氟和多氟烷基化合物暴露对甲状腺功能影响研究进展[J]. 中国公共卫生, 2023, 39(5): 670-675. doi: 10.11847/zgggws1138744
LIU Chenyang, WANG Juling, WANG Xiaofeng, . Effects and possible mechanisms of per- and polyfluoroalkyl substances exposure on human thyroid function[J]. Chinese Journal of Public Health, 2023, 39(5): 670-675. doi: 10.11847/zgggws1138744
Citation: LIU Chenyang, WANG Juling, WANG Xiaofeng, . Effects and possible mechanisms of per- and polyfluoroalkyl substances exposure on human thyroid function[J]. Chinese Journal of Public Health, 2023, 39(5): 670-675. doi: 10.11847/zgggws1138744

全氟和多氟烷基化合物暴露对甲状腺功能影响研究进展

doi: 10.11847/zgggws1138744
详细信息
    作者简介:

    刘晨阳(1998 – ),男,安徽阜阳人,硕士在读,研究方向:环境污染物暴露毒性

    通讯作者:

    金永堂,E-mail:jinedu@zju.edu.cn

  • 中图分类号: R 12

Effects and possible mechanisms of per- and polyfluoroalkyl substances exposure on human thyroid function

  • 摘要: 全氟和多氟烷基化合物(per - and polyfluoroalkyl substances,PFASs)是一类人工合成的脂肪族化合物,广泛存在于环境介质中,对人类健康和环境具有潜在、持久性的危害,因此被认为是一种有机污染物(persistent organic pollutants,POPs)。大量实验室及人群流行病学研究表明,暴露于PFASs,不但会引起机体的各种毒性,且可导致甲状腺激素(thyroid hormone,TH)水平的改变,增加发生甲状腺功能减退的风险,进而引起发育迟滞、代谢紊乱等各种相应的临床症状。本文就几种长链、短链及新型PFASs,对PFASs在人体内的毒代动力学过程、PFASs暴露对甲状腺功能的影响及其可能的作用机制作一概述。
  • 图  1  PFASs在环境中的分布及在人体内的毒代动力学过程

    图  2  PFASs作用于HPT轴的可能位点

    表  1  几种长链、短链及新型PFASs的基本信息

    中文名称英文名称简称类型CAS号分子式相对分子质量
    全氟丁酸perfluorobutanoic acidPFBA短链、新型375-22-4C4F7O2H213.9
    全氟辛酸perfluorooctanoic acidPFOA长链335-67-1C8F15O2H413.93
    全氟壬酸perfluorononanoic acidPFNA长链375-95-1C9F17O2H464.08
    全氟癸酸perfluorodecanoic acidPFDA长链335-76-2C10F19O2H514.22
    全氟十一酸perfluoroundecanoic acidPFUdA长链2058-94-8C11F21O2H564.1
    全氟十二酸perfluorododecanoic acidPFDoA长链307-55-1C12F23O2H614.11
    全氟丁基磺酸perfluorobutanesulfonic acidPFBS短链、新型375-73-5C4F9SO3H299.92
    全氟己基磺酸perfluorohexanesulfonic acidPFHxS短链、新型355-46-4C6F13SO3H399.97
    全氟辛基磺酸perfluorooctanesulfonic acidPFOS长链1763-23-1C8F17SO3H499.99
    下载: 导出CSV
  • [1] Lau C, Butenhoff JL, Rogers JM. The developmental toxicity of perfluoroalkyl acids and their derivatives[J]. Toxicology and Applied Pharmacology, 2004, 198(2): 231 – 241. doi: 10.1016/j.taap.2003.11.031
    [2] Buck RC, Franklin J, Berger U, et al. Perfluoroalkyl and poly-fluoroalkyl substances in the environment: terminology, classifica-tion, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513 – 541. doi: 10.1002/ieam.258
    [3] Sunderland EM, Hu XC, Dassuncao C, et al. A review of the pathways of human exposure to poly - and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. Journal of Exposure Science and Environmental Epidemiology, 2019, 29(2): 131 – 147. doi: 10.1038/s41370-018-0094-1
    [4] Jensen AA, Leffers H. Emerging endocrine disrupters: perfluoroal-kylated substances[J]. International Journal of Andrology, 2008, 31(2): 161 – 169. doi: 10.1111/j.1365-2605.2008.00870.x
    [5] Jian JM, Chen D, Han FJ, et al. A short review on human exposure to and tissue distribution of per - and polyfluoroalkyl substances (PFASs)[J]. Science of the Total Environment, 2018, 636: 1058 – 1069. doi: 10.1016/j.scitotenv.2018.04.380
    [6] Coperchini F, Awwad O, Rotondi M, et al. Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA)[J]. Journal of Endocrinological Investigation, 2017, 40(2): 105 – 121. doi: 10.1007/s40618-016-0572-z
    [7] Fenton SE, Ducatman A, Boobis A, et al. Per - and polyfluoroalkyl substance toxicity and human health review: current state of know-ledge and strategies for informing future research[J]. Environmental Toxicology and Chemistry, 2021, 40(3): 606 – 630. doi: 10.1002/etc.4890
    [8] Liew Z, Goudarzi H, Oulhote Y. Developmental exposures to perfluoroalkyl substances (PFASs): an update of associated health outcomes[J]. Current Environmental Health Reports, 2018, 5(1): 1 – 19. doi: 10.1007/s40572-018-0173-4
    [9] Drover SSM, Villanger GD, Aase H, et al. Maternal thyroid function during pregnancy or neonatal thyroid function and attention deficit hyperactivity disorder[J]. Epidemiology, 2019, 30(1): 130 – 144. doi: 10.1097/EDE.0000000000000937
    [10] Coperchini F, Croce L, Ricci G, et al. Thyroid disrupting effects of old and new generation PFAS[J]. Frontiers in Endocrinology, 2021, 11: 612320. doi: 10.3389/fendo.2020.612320
    [11] Zhang WP, Pang SM, Lin ZQ, et al. Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives[J]. Environmental Pollution, 2021, 272: 115908. doi: 10.1016/j.envpol.2020.115908
    [12] United Nations Environment Programme. Stockholm convention on persistent organic pollutants (POPS)[EB/OL]. (2019 – 05 – 10).https://cil.nus.edu.sg/wp-content/uploads/2019/02/2001-Stockholm-Convention-on-Persistent-Organic-Pollutants-Annexes.pdf.
    [13] United States Environmental Protection Agency. EPA′s per- and polyfluoroalkyl substances (PFAS) action plan[R]. Washington: EPA, 2019.
    [14] Liang H, Wang ZL, Miao MH, et al. Prenatal exposure to perfluoroalkyl substances and thyroid hormone concentrations in cord plasma in a Chinese birth cohort[J]. Environmental Health, 2020, 19(1): 127. doi: 10.1186/s12940-020-00679-7
    [15] Ballesteros V, Costa O, Iñiguez C, et al. Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: a systematic review of epidemiologic studies[J]. Environment Inter-national, 2017, 99: 15 – 28. doi: 10.1016/j.envint.2016.10.015
    [16] 张静洁, 赵婷, 郑娟, 等.GB/T 29493.2 — 2021, 纺织染整助剂中有害物质的测定第2部分: 全氟化合 物 (PFCs) 的测定[S]. 北京: 中国标准出版社, 2021.
    [17] Poothong S, Papadopoulou E, Padilla-Sánchez JA, et al. Multiple pathways of human exposure to poly - and perfluoroalkyl substances (PFASs): from external exposure to human blood[J]. Environment International, 2020, 134: 105244. doi: 10.1016/j.envint.2019.105244
    [18] Haug LS, Huber S, Becher G, et al. Characterisation of human exposure pathways to perfluorinated compounds – comparing exposure estimates with biomarkers of exposure[J]. Environment International, 2011, 37(4): 687 – 693. doi: 10.1016/j.envint.2011.01.011
    [19] Schrenk D, Bignami M, Bodin L, et al. Risk to human health related to the presence of perfluoroalkyl substances in food[J]. EFSA Journal, 2020, 18(9): e06223.
    [20] De Silva AO, Armitage JM, Bruton TA, et al. PFAS exposure pathways for humans and wildlife: a synthesis of current know-ledge and key gaps in understanding[J]. Environmental Toxicology and Chemistry, 2021, 40(3): 631 – 657. doi: 10.1002/etc.4935
    [21] Pérez F, Nadal M, Navarro-Ortega A, et al. Accumulation of per-fluoroalkyl substances in human tissues[J]. Environment International, 2013, 59: 354 – 362. doi: 10.1016/j.envint.2013.06.004
    [22] Zheng P, Liu YX, An Q, et al. Prenatal and postnatal exposure to emerging and legacy per - /polyfluoroalkyl substances: levels and transfer in maternal serum, cord serum, and breast milk[J]. Science of the Total Environment, 2022, 812: 152446. doi: 10.1016/j.scitotenv.2021.152446
    [23] Hu WY, Jones PD, DeCoen W, et al. Alterations in cell membrane properties caused by perfluorinated compounds[J]. Comparative Biochemistry and Physiology Part C:Toxicology and Pharmac-ology, 2003, 135(1): 77 – 88. doi: 10.1016/S1532-0456(03)00043-7
    [24] Harada K, Inoue K, Morikawa A, et al. Renal clearance of perfluorooctane sulfonate and perfluorooctanoate in humans and their species - specific excretion[J]. Environmental Research, 2005, 99(2): 253 – 261. doi: 10.1016/j.envres.2004.12.003
    [25] Fujii Y, Niisoe T, Harada KH, et al. Toxicokinetics of perfluoroalkyl carboxylic acids with different carbon chain lengths in mice and humans[J]. Journal of Occupational Health, 2015, 57(1): 1 – 12. doi: 10.1539/joh.14-0136-OA
    [26] Zhang YF, Beesoon S, Zhu LY, et al. Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life[J]. Environmental Science and Technology, 2013, 47(18): 10619 – 10627. doi: 10.1021/es401905e
    [27] Han X, Nabb DL, Russell MH, et al. Renal elimination of perfluoro-carboxylates (PFCAs)[J]. Chemical Research in Toxicology, 2012, 25(1): 35 – 46. doi: 10.1021/tx200363w
    [28] Yang CH, Glover KP, Han X. Characterization of cellular uptake of perfluorooctanoate via organic anion - transporting polypeptide 1A2, organic anion transporter 4, and urate transporter 1 for their potential roles in mediating human renal reabsorption of perfluorocarboxylates[J]. Toxicological Sciences, 2010, 117(2): 294 – 302. doi: 10.1093/toxsci/kfq219
    [29] Zhao W, Zitzow JD, Weaver Y, et al. Organic anion transporting polypeptides contribute to the disposition of perfluoroalkyl acids in humans and rats[J]. Toxicological Sciences, 2016, 156(1): 84 – 95.
    [30] Brent GA. Mechanisms of thyroid hormone action[J]. The Journal of Clinical Investigation, 2012, 122(9): 3035 – 3043. doi: 10.1172/JCI60047
    [31] Ghassabian A, Trasande L. Disruption in thyroid signaling path-way: a mechanism for the effect of endocrine - disrupting chemicals on child neurodevelopment[J]. Frontiers in Endocrinology, 2018, 9: 204. doi: 10.3389/fendo.2018.00204
    [32] Tsai MS, Lin CC, Chen MH, et al. Perfluoroalkyl substances and thyroid hormones in cord blood[J]. Environmental Pollution, 2017, 222: 543 – 548. doi: 10.1016/j.envpol.2016.11.027
    [33] Aimuzi R, Luo K, Chen Q, et al. Perfluoroalkyl and polyfluoroalkyl substances and fetal thyroid hormone levels in umbilical cord blood among newborns by prelabor caesarean delivery[J]. Environment International, 2019, 130: 104929. doi: 10.1016/j.envint.2019.104929
    [34] Berg V, Nøst TH, Pettersen RD, et al. Persistent organic pollutants and the association with maternal and infant thyroid homeostasis: a multipollutant assessment[J]. Environmental Health Perspectives, 2017, 125(1): 127 – 133. doi: 10.1289/EHP152
    [35] Webster GM, Venners SA, Mattman A, et al. Associations between perfluoroalkyl acids (PFASs) and maternal thyroid hormones in early pregnancy: a population - based cohort study[J]. Environmental Research, 2014, 133: 338 – 347. doi: 10.1016/j.envres.2014.06.012
    [36] Webster GM, Rauch SA, Marie NS, et al. Cross - sectional associations of serum perfluoroalkyl acids and thyroid hormones in U. S. adults: variation according to TPOAb and iodine status (NHANES 2007 – 2008)[J]. Environmental Health Perspectives, 2016, 124(7): 935 – 942. doi: 10.1289/ehp.1409589
    [37] Boesen SAH, Long MH, Wielsøe M, et al. Exposure to perflouroalkyl acids and foetal and maternal thyroid status: a review[J]. Environmental Health, 2020, 19(1): 107. doi: 10.1186/s12940-020-00647-1
    [38] Kim DH, Kim UJ, Kim HY, et al. Perfluoroalkyl substances in serum from South Korean infants with congenital hypothyroidism and shealthy infants – its relationship with thyroid hormones[J]. Environmental Research, 2016, 147: 399 – 404. doi: 10.1016/j.envres.2016.02.037
    [39] Vieira VM, Hoffman K, Shin HM, et al. Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis[J]. Environmental Health Perspectives, 2013, 121(3): 318 – 323. doi: 10.1289/ehp.1205829
    [40] Berg V, Nøst TH, Hansen S, et al. Assessing the relationship between perfluoroalkyl substances, thyroid hormones and binding proteins in pregnant women; a longitudinal mixed effects approach[J]. Environment International, 2015, 77: 63 – 69. doi: 10.1016/j.envint.2015.01.007
    [41] Conti A, Strazzeri C, Rhoden KJ. Perfluorooctane sulfonic acid, a persistent organic pollutant, inhibits iodide accumulation by thyroid follicular cells in vitro[J]. Molecular and Cellular Endocrinology, 2020, 515: 110922. doi: 10.1016/j.mce.2020.110922
    [42] Song M, Kim YJ, Park YK, et al. Changes in thyroid peroxidase activity in response to various chemicals[J]. Journal of Environ-mental Monitoring, 2012, 14(8): 2121 – 2126. doi: 10.1039/c2em30106g
    [43] Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals[J]. Molecular and Cellular Endocrinology, 2012, 355(2): 240 – 248. doi: 10.1016/j.mce.2011.09.005
    [44] Ren XM, Qin WP, Cao LY, et al. Binding interactions of perfluoroalkyl substances with thyroid hormone transport proteins and potential toxicological implications[J]. Toxicology, 2016, 366 – 367: 32 – 42.
    [45] Zhang J, Begum A, Brännström K, et al. Structure - based virtual screening protocol for in silico identification of potential thyroid disrupting chemicals targeting transthyretin[J]. Environmental Science and Technology, 2016, 50(21): 11984 – 11993. doi: 10.1021/acs.est.6b02771
    [46] Weiss JM, Andersson PL, Lamoree MH, et al. Competitive binding of poly - and perfluorinated compounds to the thyroid hormone transport protein transthyretin[J]. Toxicological Sciences, 2009, 109(2): 206 – 216. doi: 10.1093/toxsci/kfp055
    [47] Yu WG, Liu W, Jin YH. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism[J]. Environmental Toxicology and Chemistry, 2009, 28(5): 990 – 996. doi: 10.1897/08-345.1
    [48] Martin MT, Brennan RJ, Hu WY, et al. Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity[J]. Toxicological Sciences, 2007, 97(2): 595 – 613. doi: 10.1093/toxsci/kfm065
    [49] Yu WG, Liu W, Jin YH, et al. Prenatal and postnatal impact of perfluorooctane sulfonate (PFOS) on rat development: a cross-foster study on chemical burden and thyroid hormone system[J]. Environmental Science and Technology, 2009, 43(21): 8416 – 8422. doi: 10.1021/es901602d
    [50] Xin Y, Ren XM, Ruan T, et al. Chlorinated polyfluoroalkylether sulfonates exhibit similar binding potency and activity to thyroid hormone transport proteins and nuclear receptors as perfluorooc-tanesulfonate[J]. Environmental Science and Technology, 2018, 52(16): 9412 – 9418. doi: 10.1021/acs.est.8b01494
    [51] Zhang SN, Guo XC, Lu SY, et al. Exposure to PFDoA causes disruption of the hypothalamus - pituitary - thyroid axis in zebrafish larvae[J]. Environmental Pollution, 2018, 235: 974 – 982. doi: 10.1016/j.envpol.2018.01.015
    [52] Bjerregaard-Olesen C, Bach CC, Long MH, et al. Associations of fetal growth outcomes with measures of the combined xenoestrogenic activity of maternal serum perfluorinated alkyl acids in Danish pregnant women[J]. Environmental Health Perspectives, 2019, 127(1): 017006. doi: 10.1289/EHP1884
    [53] Sonthithai P, Suriyo T, Thiantanawat A, et al. Perfluorinated chemicals, PFOS and PFOA, enhance the estrogenic effects of 17β - estradiol in T47D human breast cancer cells[J]. Journal of Applied Toxicology, 2016, 36(6): 790 – 801. doi: 10.1002/jat.3210
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  45
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 接收日期:  2022-04-07
  • 网络出版日期:  2023-02-24
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回