Differential protein expressions in liver of mice exposed to light at night: a proteomics analysis
-
摘要:
目的 筛选分析夜间光暴露小鼠肝脏中差异表达蛋白及其生物学意义。 方法 选择健康雄性C57BL/6J小鼠随机分为夜间光暴露组和对照组,每组8只。夜间光暴露组光照/黑暗周期为24 h/0 h,对照组为12 h/12 h,连续10 d。应用串联质谱标签(TMT)技术寻找并鉴定差异表达蛋白质,对差异蛋白进行GO富集分析和KEGG信号通路分析。 结果 共鉴定383种差异表达蛋白质,其中215种蛋白质表达水平上调,168种蛋白质表达水平下调。GO功能富集分析和KEGG信号通路分析表明差异表达蛋白质主要分布在胞质部分,分子功能以蛋白结合为主,主要参与蛋白质和脂质等生物代谢过程,作用途径涉及氧化磷酸化信号通路、肿瘤坏死因子(TNF)信号通路、维甲酸诱导基因I(RIG-I)样受体信号通路等。线粒体细胞色素C氧化酶亚基3(MT-CO3)、粒体Fo复合体亚基F2(ATP5J2)、E3泛素连接酶(ITCH)、核因子κB p65亚基(NF-κB p65)、核因子κB激酶抑制剂β亚基(IKBKB)等蛋白分子可能在其中起到关键作用。 结论 根据差异表达蛋白及其作用分析,夜间光暴露可能有致肥胖、癌症的危险。 -
关键词:
- 夜间光暴露 /
- 串联质谱标签(TMT)技术 /
- 蛋白质组学
Abstract:Objective To screen and analyze differentially expressed proteins and their biological significance in the liver of mice exposed to light at night. Methods Totally 16 healthy male C57BL/6J mice were randomly divided into an experimental group (n = 8) exposed to light 24 hours a day continuously for 10 days and a control group (n = 8) with lighting 12 hours a day also for 10 consecutive days. Tandem mass tag (TMT) technology was applied to detect differentially expressed proteins in liver tissues of the mice. The differential protein expressions were analyzed using Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis. Results A total of 383 differentially expressed proteins were identified, of which 215 were expressed at an up-regulated level and 168 proteins were expressed at a down-regulated level. GO enrichment analysis and KEGG signaling pathway analysis revealed that the differentially expressed proteins were mainly distributed in the cytoplasm, and their major molecular functions were protein binding, mainly involved in protein and lipid biological metabolic processes, and their pathways involved in signaling pathways of oxidative phosphorylation, tumor necrosis factor (TNF), and retinoic acid-inducible gene-I (RIG-I)-like receptor. Protein molecules such as mitochondrial cytochrome C oxidase subunit 3 (MT-CO3), mitochondrial Fo complex subunit F2 (ATP5J2), Itchy E3 ubiquitin protein ligase (ITCH), nuclear factor kappa B p65 subunit (NF-κB p65), and inhibitor of nuclear factor Kappa-B kinase subunit Beta (IKBKB) may play a key role. Conclusion In terms of differentially expressed proteins and their functions in liver tissue, light exposure at night may lead to obesity and cancer in mice. -
Key words:
- light exposure at night /
- tandem mass tag technology /
- proteomics
-
表 1 蛋白组学数据库检索参数
检索项目 检索参数 固定修饰(fixed modifications) carbamidomethyl (C) 可变修饰(variable modifications) oxidation (M) 酶(enzyme) trypsin 遗漏酶切位点(maximum missed cleavages) 2 一级质谱误差(peptide mass tolerance) 20 ppm 二级质谱误差(fragment mass tolerance) 0.6 Da 肽段/碎片离子质量数(mass values) monoisotopic(单同位素) 显著性阈值(significance threshold) 0.05 表 2 差异表达蛋白GO分类注释
类别 功能分类 差异蛋白比例(%) 生物过程
(biological process)有机氮化合物代谢进程
代谢过程
大分子定位
细胞成分组织
定位
未知与其他45
28
6
5
3
13细胞组分
(cell component)胞质部分
膜结合细胞器
细胞质
其他细胞成分
未知与其他62
14
9
3
12分子功能
(molecular function)蛋白结合
结合
多聚腺苷酸RNA结合蛋白
催化活性
RNA结合
未知与其他44
15
13
12
2
14表 3 KEGG通路富集类别
一级分类 二级分类 代谢通路 涉及差异蛋白数量 代谢 能量代谢 氧化磷酸化 9 核苷酸代谢 嘧啶代谢 6 其他氨基酸的代谢 谷胱甘肽代谢 4 糖类生物合成与代谢 其他类型的O-聚糖生物合成 3 遗传信息处理 翻译 mRNA监测通路 6 环境信息处理 信号转导 TNF信号通路 7 mTOR信号通路 5 NF-κB信号通路 6 生物体系统 免疫系统 RIG-I样受体信号通路 5 NOD样受体信号通路 4 细胞质DNA感应通路 4 内分泌系统 脂肪细胞因子信号通路 5 排泄系统 集合管酸分泌 3 人类疾病 内分泌和代谢性疾病 非酒精性脂肪肝(NAFLD) 8 表 4 差异蛋白KEGG通路富集结果
代谢通路 上调蛋白质 下调蛋白质 氧化磷酸化(oxidative phosphorylation) Atp6v1d、Atp5l Mt-Co3、Atp5j2、Tcirg1、Atp6v0c、Atp5g2、Ndufb8、Cox8a TNF信号通路
(TNF signaling pathway)Itch、Ripk1、Rela、Tradd、Ikbkb Icam1、Pgam5 RIG-I样受体信号通路
(RIG-I-like receptor signaling pathway)Ripk1、Isg15、Rela、Tradd、Ikbkb -
[1] Bauer M, Glenn T, Monteith S, et al. The potential influence of LED lighting on mental illness[J]. The World Journal of Biological Psychiatry, 2018, 19(1): 59 – 73. doi: 10.1080/15622975.2017.1417639 [2] Cho Y, Ryu SH, Lee BR, et al. Effects of artificial light at night on human health: a literature review of observational and experimental studies applied to exposure assessment[J]. Chronobiology Inter-national, 2015, 32(9): 1294 – 1310. doi: 10.3109/07420528.2015.1073158 [3] Hunter CA, Kartal F, Koc ZC, et al. Mitochondrial oxidative phosphorylation is impaired in TALLYHO mice, a new obesity and type 2 diabetes animal model[J]. The International Journal of Biochemistry and Cell Biology, 2019, 116: 105616. doi: 10.1016/j.biocel.2019.105616 [4] Moreno-Navarrete JM, Moreno M, Ortega F, et al. CISD1 in association with obesity - associated dysfunctional adipogenesis in human visceral adipose tissue[J]. Obesity, 2016, 24(1): 139 – 147. doi: 10.1002/oby.21334 [5] Corsi S, Iodice S, Vigna L, et al. Platelet mitochondrial DNA methylation predicts future cardiovascular outcome in adults with overweight and obesity[J]. Clinical Epigenetics, 2020, 12(1): 29. doi: 10.1186/s13148-020-00825-5 [6] Flaquer A, Baumbach C, Kriebel J, et al. Mitochondrial genetic variants identified to be associated with BMI in adults[J]. PLoS One, 2014, 9(8): e105116. doi: 10.1371/journal.pone.0105116 [7] Ghnaimawi S, Baum J, Liyanage R, et al. Concurrent EPA and DHA supplementation impairs brown adipogenesis of C2C12 cells[J]. Frontiers in Genetics, 2020, 11: 531. doi: 10.3389/fgene.2020.00531 [8] Yang XD, Xiang DX, Yang YY. Role of E3 ubiquitin ligases in insulin resistance[J]. Diabetes, Obesity and Metabolism, 2016, 18(8): 747 – 754. doi: 10.1111/dom.12677 [9] Marino A, Menghini R, Fabrizi M, et al. ITCH deficiency protects from diet - induced obesity[J]. Diabetes, 2014, 63(2): 550 – 561. doi: 10.2337/db13-0802 [10] Pyo JS, Kang G, Kim DH, et al. Activation of nuclear factor - κB contributes to growth and aggressiveness of papillary thyroid carcinoma[J]. Pathology – Research and Practice, 2013, 209(4): 228 – 232. doi: 10.1016/j.prp.2013.02.004 [11] Krazinski BE, Kowalczyk AE, Sliwinska-Jewsiewicka A, et al. IKBKB expression in clear cell renal cell carcinoma is associated with tumor grade and patient outcomes[J]. Oncology Reports, 2019, 41(2): 1189 – 1197. -