Epidemiological characteristics of two COVID-19 outbreaks caused by SARS-CoV-2 prototype and Omicron variant in border area of Yunnan province: a comparative analysis
-
摘要:
目的 了解由新冠病毒原型株和奥密克戎变异株引起的新冠肺炎疫情流行病学特征差异,总结防控经验,为云南边境地区实时调整防控措施提供参考依据。 方法 对瑞丽市2021年3月29日 — 4月19日(以下简称新冠病毒原型株疫情)及2022年2月16日 — 3月26日(以下简称奥密克戎变异株疫情)两起新冠肺炎疫情的三间分布、核酸检测Ct值、潜伏期及密切接触者续发情况、聚集性疫情等方面进行对比描述性分析。 结果 两起疫情均由境外输入引起,新冠病毒原型株疫情以确诊病例为主占79.49 %(93/117),奥密克戎变异株疫情以无症状感染者为主,占81.77 %(314/384),两起疫情感染者临床分型差异有统计学意义(χ2 = 177.254,P < 0.001);新冠病毒原型株疫情感染者确诊时核酸检测ORF1ab基因及N基因Ct值均高于奥密克戎变异株疫情,差异有统计学意义(Z = 6.089,6.924 ,P<0.001); 奥密克戎变异株疫情<15岁及 ≥ 60岁组占比较新冠病毒原型株疫情有较大幅度上升,两起疫情年龄分布差异有统计学意义(χ2 = 33.236,P<0.001);两起疫情潜伏期M(P25,P75)分别为3(1,4.75)、3(2~5)d,差异无统计学意义(Z = – 1.54,P = 0.124),潜伏期<7 d分别占 88.75 %和95.24 %;两起疫情密切接触者感染续发率为1.17 %(80/6833)、2.78 %(145/5223),其中核心密接续发率为6.3 %(58/920)、6.23 %(111/1782),一般密接、次密接中均无续发病例,两起疫情均显示在共同居住生活续发率最高,其次是聚餐;新冠病毒原型株疫情共发生聚集性疫情11起,占所有感染者的76.07 %,奥密克戎变异株疫情发生聚集性疫情48起,占所有感染者的33.85 %。 结论 奥密克戎变异株感染者无症状比例高于新冠病毒原型株感染者,但奥密克戎变异株传染性强于新冠病毒原型株。云南边境地区应加强对周边邻国新冠肺炎疫情态势研判,切实落实重点人群监测、密切接触者和次级密切接触者分类分层管理等防控措施,持续提高老年人、< 15岁等适龄人群的免疫接种和序贯接种覆盖率,以实现外防输入,动态清零的防控策略。 Abstract:Objective To examine the difference in epidemiological characteristics of coronavirus disease 2019 (COVID-19) epidemics caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prototype strain and Omicron variant in a border area of Yunnan province for providing references to real-time adjustment of regional measures on COVID-19 epidemic prevention and control. Methods Field surveys were conducted to collected relevant information on confirmed cases, asymptomatic infections, close contacts and secondary close contacts from two COVID-19 outbreaks in Ruili – a border city of Yunnan province: an epidemic during March 29 – April 19, 2021 caused by SARS-CoV-2 prototype strain based on whole gene sequencing (abbreviated as prototype-caused epidemic) and an another during February 16 – March 26, 2022 caused by SARS-CoV-2 Omicron variant BA.2 (variant-caused epidemic). Descriptive statistics were performed to compare epidemiological characteristics between the two COVID-19 outbreaks. Results Both the two outbreaks were induced by imported cases from abroad. The majority of sufferers were confirmed cases (93/117, 79.49%) for the prototype-caused epidemic and were asymptomatic infections (314/384, 81.77%) for the variant-caused epidemic, with a significant difference in the proportion between the two epidemics (χ2 = 177.254, P < 0.001). In nucleic acid tests at the time of diagnosis, the cycle threshold (Ct) values of ORF1ab gene and N gene for the cases infected with SARS-CoV-2 prototype strain were significantly higher than those for the cases with SARS-CoV-2 Omicron variant infection (Z = 6.089, 6.924, P < 0.001). The proportions of cases aged < 15 years and > 60 years in the variant-caused epidemic were significantly higher than those in the prototype-caused epidemic (χ2 = 33.236, P < 0.001). The incubation period (median [M], 25th percentile [P25], 75th percentile [P75]) for the secondary infections among close contacts was not significantly different between the two epidemics (3 [1,4.75] vs. 3 [2, 5], Z = – 1.54, P = 0.124), with 88.75% and 95.24% of the secondary infections having the incubation period less than 7 days for the prototype- and variant-caused epidemic. The secondary infection rate of close contacts was 1.17% (80/6 833) and 2.78% (145/5 223) and the rate of core close contact was 6.3% (58/920) and 6.23% (111/1782) for the prototype- and variant-caused epidemic. No secondary infection was detected among general close contacts and secondary close contacts and the secondary infection rate was the highest among the contacts living together with confirmed cases, followed by that among those having dinner with the confirmed cases. Totally 11 and 48 clustering epidemics were identified in the two COVID-19 outbreaks caused by SARS-CoV-2 prototype strain and Omicron variant, involving 76.07% and 33.85% of all diagnosed cases during the two outbreaks. Conclusion Compared to SARS-CoV-2 prototype strain, SARS-CoV-2 Omicron variant BA.2 exhibits higher infectivity and could result in more asymptomatic infections. The study results should be considered in developing measures on COVID-19 epidemic prevention and control. -
表 1 两起新冠肺炎疫情感染者基本人口学特征
类别 新冠病毒原型株疫情(n = 117) 奥密克戎变异株疫情 (n = 384) χ2 值 P 值 病例数(例) 占比(%) 病例数(例) 占比(%) 性别 男 40 34.19 178 46.35 5.4 0.02 女 77 65.81 206 53.65 年龄(岁) 0~ 4 3.42 67 17.45 33.236 < 0.001 15~ 45 38.46 92 23.96 30~ 50 42.74 120 31.25 45~ 16 13.68 73 19.01 60~ 2 1.71 32 8.33 职业 农民 0 0 64 16.67 285.722 < 0.001 无业 10 8.55 49 12.76 服务业 5 4.27 56 14.58 学生 1 0.85 45 11.72 学龄前儿童 3 2.56 32 8.33 从事闭环管理工作人员 0 0 41 10.68 销售人员 97 82.91 27 7.03 其他 1 0.85 70 18.23 地区分布 主城区 58 49.57 175 45.57 167.062 < 0.001 姐告镇 59 50.43 27 7.03 畹町镇 0 0 85 22.14 其他乡镇 0 0 97 25.26 表 2 两起新冠肺炎疫情感染者确诊时核酸检测Ct值比较[M(P25,P75)]
基因 新冠病毒原型株疫情 奥密克戎变异株疫情 Z 值 P 值 ORF1ab 26.63(22.18,31.08) 21.24(18.58,26.45) 6.089 < 0.001 N 26.72(23.21,30.93) 21.10(17.7,26.3) 6.924 < 0.001 表 3 两起新冠肺炎疫情密切接触者不同暴露情况续发率
类别 新冠病毒原型株疫情 奥密克戎变异株疫情 密接人数 续发病例数 续发率(%) 密接人数 续发病例数 续发率(%) 密切程度 核心密接 920 58 6.30 1782 111 6.23 次核心密接 5317 22 0.41 3184 34 1.07 一般密接 596 0 0 257 0 次密 3507 0 0 2337 0 核心密接年龄(岁) < 15 92 3 3.26 214 33 15.42 15~29 305 22 7.21 443 30 6.77 30~44 239 27 11.30 628 27 4.30 45~59 71 5 7.04 329 10 3.04 ≥ 60 11 1 9.09 90 10 11.11 不详 202 0 0.00 78 1 1.28 暴露场景 共同居住生活 396 28 7.07 1041 97 9.32 工作暴露 338 23 6.8 426 1 0.23 聚餐/聚会 186 7 3.76 315 13 4.13 日常交谈 760 8 1.05 1203 17 1.41 仅共处同一密闭空间无直接接触 1723 7 0.41 332 1 0.3 共用楼道/电梯 2834 7 0.25 1649 16 0.97 同乘交通工具 81 0 0 15 0 0 一般接触 170 0 0 174 0 0 购物/接触物品 211 0 0 68 0 0 不详 139 0 0 接触指示病例情况 仅接触1例确诊病例 4545 39 0.86 736 15 2.04 仅接触1例无症状感染者 1078 7 0.65 3338 49 1.47 接触2例及以上确诊病例 920 26 2.83 17 0 0 接触2例及以上无症状感染者 63 2 3.17 701 46 6.56 同时接触确诊病例及无症状感染者 227 6 2.64 431 35 8.12 表 4 聚集性疫情发生情况
发生场所 新冠病毒原型株疫情 奥密克戎变异株疫情 起数 感染人数 感染最少人数 感染最多人数 起数 感染人数 感染最少人数 感染最多人数 家庭内 3 6 2 2 45 122 2 6 工作场所 8 83 2 52 3 11 2 7 总计 11 89 2 52 48 133 2 7 -
[1] Qi SX, Zhao X, Hao P, et al. Two reemergent cases of COVID - 19 – Hebei province, China, January 2, 2021[J]. China CDC Weekly, 2021, 3(2): 25 – 27. doi: 10.46234/ccdcw2021.006 [2] Zhou L. Yao LS, Hao P, et al. COVID - 19 cases spread through the K350 train – Jilin and Heilongjiang provinces, China, January 2021[J]. China CDC Weekly, 2021, 3(8): 162 – 164. doi: 10.46234/ccdcw2021.026 [3] Yao LS, Luo MY, Jia TW, et al. COVID - 19 super spreading event amongst elderly individuals-Jilin province, China, January 2021[J]. China CDC Weekly, 2021, 3(10): 211 – 213. doi: 10.46234/ccdcw2021.050 [4] 贾蕾, 王小莉, 吴双胜, 等. 北京市顺义区新冠肺炎聚集性疫情的流行病学特征[J]. 国际病毒学杂志, 2021, 28(5): 379 – 383. doi: 10.3760/cma.j.issn.1673-4092.2021.05.006 [5] 瑞丽市人民政府. 瑞丽市简介[EB/OL].(2022 – 05 – 12).https://www.rl.gov.cn/Web/_M6_4QWS8V0X3BBCEBB5EB4943BCBD_1.htm. [6] 国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 关于印发新型冠状病毒肺炎防控方案(第七版)的通知[EB/OL]. (2020 – 09 – 15). http://www.gov.cn//xinwen/2020-09/15/content_5543680.htm. [7] 国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 关于印发新型冠状病毒肺炎防控方案(第八版)的通知[EB/OL]. (2021 – 05 – 14). http://www.nhc.gov.cn/jkj/s3577/202105/6f1e8ec6c4a540d99fafef52fc86d0f8.shtml. [8] 上海第一医学院, 武汉医学院. 流行病学[M]. 北京: 人民卫生出版社, 1981: 16. [9] 康良钰, 刘珏, 刘民. 新型冠状病毒肺炎家庭续发率的研究进展[J]. 中国预防医学杂志, 2021, 22(1): 76 – 80. doi: 10.16506/j.1009-6639.2021.01.015 [10] 国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 关于印发新型冠状病毒肺炎防控方案(第九版)的通知[EB/OL]. (2022 – 06 – 28). http://www.nhc.gov.cn/jkj/s3577/202206/de224e7784fe4007b7189c1f1c9d5e85.shtml. [11] 马钰, 马蒙蒙, 罗业飞, 等. 广州市新型冠状病毒肺炎密切接触者感染危险因素分析[J]. 中国公共卫生, 2020, 36(4): 507 – 511. doi: 10.11847/zgggws1129419 [12] 高雅, 姜文婕, 姚利利, 等. 上海市宝山区新型冠状病毒肺炎病例密切接触者感染危险因素分析[J]. 实用预防医学, 2022, 29(4): 399 – 402. doi: 10.3969/j.issn.1006-3110.2022.04.004 [13] 宁少奇, 张义, 曹磊, 等. 陕西省新型冠状病毒肺炎病例的传播特点分析[J]. 中华预防医学杂志, 2020, 54(5): 493 – 497. doi: 10.3760/cma.j.cn112150-20200227-00201 [14] 李敏, 袁珩, 曹一鸥, 等. 四川省新型冠状病毒肺炎无症状感染者传染性分析[J]. 预防医学情报杂志, 2021, 37(2): 161 – 164. [15] 田路路, 姚歆, 王梦媛, 等. 四川省664例新型冠状病毒肺炎病例的流行病学特征分析[J]. 现代预防医学, 2021, 48(10): 1765 – 1768, 1783. [16] 邹旋, 宋丽霞, 何建凡, 等. 深圳市2063例新冠肺炎密切接触者集中医学观察结果分析[J]. 中国公共卫生管理, 2021, 37(4): 557 – 559. [17] 胡永峰, 刘立平, 姚喜清, 等. 武汉市某区新型冠状病毒肺炎密切接触者感染与发病流行病学特征分析[J]. 现代预防医学, 2020, 47(21): 3993 – 3997. [18] 潘静静, 王莹莹, 王文华, 等. 一起由奥密克戎变异株BA.2.2引起的河南省新冠肺炎本土疫情流行病学特征分析[J]. 中国公共卫生, 2022, 38(8): 975 – 979. [19] 李伟, 李菁菁. 比例原则在密切接触者隔离规则中的适用 —— 以新冠疫情防控为例[J]. 西南石油大学学报(社会科学版), 2022, 24(1): 9 – 15. [20] 廖聪慧, 王子晨, 邓强, 等. COVID - 19疫苗上市后安全性及有效性的研究进展[J]. 暨南大学学报(自然科学与医学版), 2021, 42(5): 547 – 556. [21] Cox RJ, Brokstad KA. Not just antibodies: B cells and T cells mediate immunity to COVID - 19[J]. Nature Reviews Immunology, 2020, 20(10): 581 – 582. doi: 10.1038/s41577-020-00436-4 [22] Ai JW, Wang X, He XY, et al. Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages[J]. Cell Host and Microbe, 2022, doi: 10.1016/j.chom.2022.05.001. [23] Ai JW, Zhang HC, Zhang Y, et al. Omicron variant showed lower neutralizing sensitivity than other SARS - CoV - 2 variants to immune sera elicited by vaccines after boost[J]. Emerging Microbes and Infections, 2022, 11(1): 337 – 343. doi: 10.1080/22221751.2021.2022440 [24] Ong SWX, Tan YK, Chia PY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS - CoV - 2) from a symptomatic patient[J]. JAMA, 2020, 323(16): 1610 – 1612. doi: 10.1001/jama.2020.3227 [25] van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS - CoV - 2 as compared with SARS - CoV - 1[J]. The New England Journal of Medicine, 2020, 382(16): 1564 – 1567. doi: 10.1056/NEJMc2004973 [26] 张明洪, 何树森, 张艳, 等. 新型冠状病毒感染者居住环境用品核酸检测与分析[J]. 现代预防医学, 2020, 47(19): 3494 – 3496. [27] 刘莉莉, 李涛, 刘柏林, 等. 新冠肺炎无症状感染者隔离点环境及用具监测结果分析[J]. 现代医药卫生, 2021, 37(18): 3163 – 3167. doi: 10.3969/j.issn.1009-5519.2021.18.027 [28] 吴梦萱. 云南德宏州新冠疫苗全程接种率96.92%[EB/OL]. 央视新闻. (2021 – 07 – 06).https://baijiahao.baidu.com/s?id=1704520607633753314. [29] 解有成, 康殷楠, 高春, 等. 新冠病毒“奥密克戎亚型变异毒株BA. 2”的最新研究进展[J]. 海南医学院学报, 2022, 28(8): 561 – 565. [30] 李亚飞, 范威, 王文华, 等. 一起由新冠病毒奥密克戎变异株引起的学校聚集性疫情[J]. 中国公共卫生, 2022, 38(5): 614 – 618. doi: 10.11847/zgggws1138512 -

计量
- 文章访问数: 465
- HTML全文浏览量: 145
- PDF下载量: 164
- 被引次数: 0