Optimization of COVID-19 prevention and control measures based on prevalence characteristics of SARS-CoV-2 Delta and Omicron variants: an analysis on surveillance data of Ningbo city
-
摘要:
目的 分析比较宁波市Delta和Omicron变异株引发本土聚集性疫情续发感染者的流行特征,为进一步优化调整新冠肺炎疫情的防控措施提供参考依据。 方法 以2021年12月1日 — 2022年5月31日宁波市37起本土新冠肺炎疫情中判定为密切接触者(密接)中的171例续发感染者为研究对象,对两种变异株的感染者流行特征进行描述性分析,以与关联病例有明确暴露时间的续发感染者计算潜伏期。 结果 确诊病例占80.70 %(138/171),无症状感染者占19.30 %(33/171)。Delta和Omicron变异株感染者分别占64.33 %(110/171)和35.67 %(61/171),Omicron变异株的无症状感染者比例高于Delta变异株(54.1 % vs. 0,P < 0.01)。与关联病例有明确暴露时间的22例确诊病例(Delta变异株15例,Omicron变异株 7例)平均潜伏期为(3.45 ± 0.44)d,Delta和Omicron变异株感染者的最长潜伏期分别为8和6 d,平均潜伏期分别为(3.60 ± 0.58)和(3.14 ± 0.63)d,差异无统计学意义(P > 0.05)。Omicron变异株感染者末次暴露至核酸检测首次阳性间隔时间均 ≤ 7d。Omicron变异株感染者核酸检测首次阳性N基因Ct值高于Delta变异株感染者,但平均住院天数少于Delta变异株(P均 < 0.05)。 结论 Omicron变异株引发本地疫情的潜伏期 < 7 d且较Delta变异株的致病性低,建议调整密接的管控措施为7 d集中隔离和3 d居家健康监测。 -
关键词:
- 新型冠状病毒肺炎 /
- Delta变异株 /
- Omicron变异株 /
- 防控措施
Abstract:Objective To analyze and compare prevalence characteristics of coronavirus disease 2019 (COVID-19) cluster epidemic-related secondary infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variant in Ningbo city, and to provide a basis for optimizing and adjusting measures on COVID-19 prevention and control. Methods From the National Information System for Disease Control and Prevention and the reports of field surveys, we extracted the information on 171 COVID-19 cases with SARS-CoV-2 Delta and Omicron variant infection identified among close contacts of 37 local COVID-19 outbreaks in Ningbo city from December 1, 2021 to May 31, 2022. Descriptive analysis was performed to analyze prevalence characteristics of the cases and the incubation period of secondary infection was calculated for the cases with definite exposure time to index cases. Results Of all the cases, 80.70% (n = 138) and 19.30% (n = 33) were confirmed patients and asymptomatic infections; 64.33% (n = 110) and 35.67% (n = 61) were infected with SARS-CoV-2 Delta and Omicron variant, respectively. The proportion of asymptomatic infection was significantly higher in the cases infected with Omicron variant than that in the cases with Delta variant (54.10% vs. 0, P < 0.05). The mean incubation period was 3.45 ± 0.44 days for the 22 confirmed cases (15 and 7 with Delta and Omicron variant infection) after a definite exposure to the index case. The longest incubation period of Delta and Omicron variant infection were 8 and 6 days. The mean incubation period was 3.60 ± 0.58 and 3.14 ± 0.63 days for Delta and Omicron variant infection, with no significant difference (P > 0.05). The interval time between the last exposure and the first positive detection of nucleic acid was ≤ 7 days for the cases with Omicron variant infection. The Ct value of N gene at the first positive nucleic acid detection was significantly higher in the patients with Omicron variant infection than that in those with Delta variant infection (P < 0.05), but the average hospitalization days of the cases with Omicron variant infection was significantly lower than that of cases infected with Delta variant (P < 0.05). Conclusion The incubation period of SARS-CoV-2 Omicron variant infection is less than 7 days and Omicron variant infection is less pathogenic than Delta variant infection. The results suggest that the recommended managent and control measures for close contacts are 7 days′ centralized isolation and 3 days′ home-based health monitoring. -
Key words:
- COVID-19 /
- Omicron variant /
- Delta variant /
- prevention and control measures
1) (张栋梁为本文并列第一作者) -
表 1 不同新冠病毒变异株续发感染者的基本情况比较
项目 Delta变异株(n = 110) Omicron变异株(n = 61) χ2 值 P 值 例数 构成比(%) 例数 构成比(%) 性别 2.231 0.135 男 60 54.55 26 42.62 女 50 45.45 35 57.38 年龄组(岁) 6.817 0.033 ≤ 34 30 27.27 28 45.90 34~52 41 37.27 20 32.79 > 52 39 35.46 13 21.31 发现方式 2.941 0.086 集中隔离 77 70.00 50 81.97 非隔离点发现 33 30.00 11 18.03 与关联病例关系 0.227 0.634 家庭成员 27 24.55 17 27.87 非家庭成员 83 75.45 44 72.13 病例类型 73.738 < 0.001 确诊病例 110 100.00 28 45.90 无症状感染者 0 0.00 33 54.10 表 2 Delta和Omicron变异株续发感染者流行特征
项目 Delta变异株(n = 110) Omicron变异株(n = 61) χ2/t/Z 值 P 值 末次暴露与首阳间隔时间(d) 3.166 0.075 ≤ 7 102(92.73 %) 61(100 %) > 7 8(7.27 %) 0(0.00 %) 潜伏期(d) 3.60 ± 0.58 3.14 ± 0.63 0.475 0.640 N基因Ct值 23.00 ± 0.60 26.08 ± 0.89 – 2.957 0.004 住院天数(d) 24.50(20.75,31.00) 18.00(12.00,22.50) – 5.467 < 0.001 -
[1] World Health Organization. Tracking SARS-CoV-2 variants[EB/OL]. (2022 – 06 – 01)[2022 – 06 – 08].https://www.who.int/zh/activities/tracking-SARS-CoV-2-variants. [2] Chen JH, Wang R, Gilby NB, et al. Omicron variant (B. 1.1. 529): infectivity, vaccine breakthrough, and antibody resistance[J]. Journal of Chemical Information and Modeling, 2022, 62(2): 412 – 422. doi: 10.1021/acs.jcim.1c01451 [3] Ren SY, Wang WB, Gao RD, et al. Omicron variant (B. 1.1. 529) of SARS-CoV-2: mutation, infectivity, transmission, and vaccine resistance[J]. World Journal of Clinical Cases, 2022, 10(1): 1 – 11. doi: 10.12998/wjcc.v10.i1.1 [4] 国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 国务院应对新型冠状病毒肺炎疫情联防联控机制综合组关于印发新型冠状病毒肺炎防控方案(第八版)的通知[EB/OL]. (2021 – 05 – 14)[2022 – 03 – 01]. http://www.nhc.gov.cn/jkj/s3577/202105/6f1e8ec6c4a540 d99fafef52fc86 d0f8.shtml. [5] 中华人民共和国国家卫生健康委员会. 关于印发新型冠状病毒肺炎诊疗方案(试行第八版修订版)的通知[EB/OL]. (2021 – 04 – 14)[2022 – 06 – 24]. http: //www. nhc. gov. cn/xcs/zhengcwj/202104/7de0b3837c8b4606a0594aeb0105232b. shtml. [6] 国家卫生健康委员会办公厅, 国家中医药管理局办公室. 关于印发新型冠状病毒肺炎诊疗方案(试行第九版)的通知[EB/OL]. (2022 – 03 – 14)[2022 – 06 – 24]. http://www.nhc.gov.cn/yzygj/s7653p/202203/b74ade1ba4494583805a3d2e40093d88.shtml. [7] 中华人民共和国国家卫生健康委员会. 国务院联防联控机制2022年5月13日新闻发布会文字实录[EB/OL]. (2022 – 05 – 13)[2022 – 06 – 20]. http://www.nhc.gov.cn/xcs/fkdt/202205/3e9cae4a4a6b4c03b74fb58b50871e47.shtml. [8] Jørgensen SB, Nygård K, Kacelnik O, et al. Secondary attack rates for omicron and delta variants of SARS-CoV-2 in Norwegian households[J]. JAMA, 2022, 327(16): 1610 – 1611. doi: 10.1001/jama.2022.3780 [9] 张蕊, 礼彦侠, 于丽娅, 等. 辽宁省新型冠状病毒肺炎病例密切接触者感染风险及其影响因素分析[J]. 中国公共卫生, 2020, 36(4): 477 – 480. doi: 10.11847/zgggws1128910 [10] Backer JA, Eggink D, Andeweg SP, et al. Shorter serial intervals in SARS-CoV-2 cases with Omicron BA.1 variant compared with Delta variant, the Netherlands, 13 to 26 December 2021[J]. Eurosurveillance, 2022, 27(6): 2200042. [11] Cao YL, Wang J, Jian FC, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies[J]. Nature, 2022, 602(7898): 657 – 663. doi: 10.1038/s41586-021-04385-3 [12] Garrett N, Tapley A, Andriesen J, et al. High Rate of Asympto-matic Carriage Associated with Variant Strain Omicron [EB/OL]. (2022 – 01 – 14) [2022 – 06 – 08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764727/. [13] Peacock TP, Brown JC, Zhou J, et al. The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry [EB/OL]. (2022 – 01 – 03) [2022 – 06 – 08]. https://www.biorxiv.org/content/10.1101/2021.12.31.474653v1. [14] Bojkova D, Widera M, Ciesek S, et al. Reduced interferon antagonism but similar drug sensitivity in Omicron variant compared to Delta variant of SARS-CoV-2 isolates[J]. Cell Research, 2022, 32(3): 319 – 321. doi: 10.1038/s41422-022-00619-9 [15] Hui KPY, Ho JCW, Cheung MC, et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo[J]. Nature, 2022, 603(7902): 715 – 720. doi: 10.1038/s41586-022-04479-6 [16] Rabaan AA, Tirupathi R, Sule AA, et al. Viral dynamics and real-time RT-PCR Ct values correlation with disease severity in COVID-19[J]. Diagnostics (Basel, Switzerland), 2021, 11(6): 1091. [17] Walker AS, Pritchard E, House T, et al. Ct threshold values, a proxy for viral load in community SARS-CoV-2 cases, demon-strate wide variation across populations and over time[J]. eLife, 2021, 10: e64683. doi: 10.7554/eLife.64683 [18] 吴双胜, 潘阳, 孙瑛, 等. 新型冠状病毒肺炎病例呼吸道病毒载量与密切接触者续发风险的关系[J]. 中华流行病学杂志, 2021, 42(6): 1008 – 1011. doi: 10.3760/cma.j.cn112338-20210224-00141 [19] Hay JA, Kissler SM, Fauver JR, et al. Viral dynamics and duration of PCR positivity of the SARS-CoV-2 Omicron variant [EB/OL]. (2022 – 01 – 03) [2022 – 06 – 8]. https://www.researchgate.net/publication/357841795_Viral_dynamics_and_duration_of_PCR_positivity_of_the_SARS-CoV-2_Omicron_variant. [20] Kozlov M. How does Omicron spread so fast? A high viral load isn't the answer[J]. Nature, 2022,doi: 10.1038/d41586-022-00129-z. [21] Kim S, Nguyen TT, Taitt AS, et al. SARS-CoV-2 Omicron mutation is faster than the chase: multiple mutations on spike/ACE2 interaction residues[J]. Immune Network, 2021, 21(6): e38. doi: 10.4110/in.2021.21.e38 [22] Aranha C, Patel V, Bhor V, et al. Cycle threshold values in RT-PCR to determine dynamics of SARS-CoV-2 viral load: an approach to reduce the isolation period for COVID-19 patients[J]. Journal of Medical Virology, 2021, 93(12): 6794 – 6797. doi: 10.1002/jmv.27206 [23] 潘静静, 王莹莹, 王文华, 等. 一起由奥密克戎变异株BA. 2.2引起的河南省新冠肺炎本土疫情流行病学特征分析[J]. 中国公共卫生. 2022, 38(8): 975 – 979. [24] Brandal LT, MacDonald E, Veneti L, et al. Outbreak caused by the SARS-CoV-2 Omicron variant in Norway, November to December 2021[J]. Eurosurveillance, 2021, 26(50): 2101147. [25] 黄云, 李依红, 谢仕兰, 等. 新型冠状病毒Omicron变异株研究进展[J]. 中华流行病学杂志, 2022, 43(5): 655 – 662. doi: 10.3760/cma.j.cn112338-20220121-00061 [26] 吴俣, 刘民. 不同新型冠状病毒变异株感染的COVID-19潜伏期研究[J]. 中国全科医学, 2022, 25(11): 1309 – 1313, 1319. -

计量
- 文章访问数: 774
- HTML全文浏览量: 199
- PDF下载量: 185
- 被引次数: 0