高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细胞外囊泡在吸烟所致慢性阻塞性肺病中作用及其机制研究进展

陆璐 施爱民 刘起展

陆璐, 施爱民, 刘起展. 细胞外囊泡在吸烟所致慢性阻塞性肺病中作用及其机制研究进展[J]. 中国公共卫生. doi: 10.11847/zgggws1139677
引用本文: 陆璐, 施爱民, 刘起展. 细胞外囊泡在吸烟所致慢性阻塞性肺病中作用及其机制研究进展[J]. 中国公共卫生. doi: 10.11847/zgggws1139677
LU Lu, SHI Ai-min, LIU Qi-zhan. Role and mechanism of extracellular vesicles in smoking-induced chronic obstructive pulmonary disease: a review on research progress[J]. Chinese Journal of Public Health. doi: 10.11847/zgggws1139677
Citation: LU Lu, SHI Ai-min, LIU Qi-zhan. Role and mechanism of extracellular vesicles in smoking-induced chronic obstructive pulmonary disease: a review on research progress[J]. Chinese Journal of Public Health. doi: 10.11847/zgggws1139677

细胞外囊泡在吸烟所致慢性阻塞性肺病中作用及其机制研究进展

doi: 10.11847/zgggws1139677
基金项目: 国家自然科学基金(82173563;81973085)
详细信息
    作者简介:

    陆璐(1991 – ),女,江苏扬州人,实验师,硕士,研究方向:环境毒理

    通讯作者:

    刘起展,E-mail:qzliu@njmu.edu.cn

  • 中图分类号: R 114

Role and mechanism of extracellular vesicles in smoking-induced chronic obstructive pulmonary disease: a review on research progress

  • 摘要: 慢性阻塞性肺病(chronic obstructive pulmonary disease, COPD)是一种复杂的异质性呼吸系统疾病,其主要是因长期吸入有害颗粒引起的肺功能和肺结构的改变。香烟烟雾(cigarette smoke, CS)是COPD的主要危险因素,其引起的炎症、细胞应激和组织破坏在COPD中发挥关键作用。细胞外囊泡(extracellular vesicles, EVs)为一种具有功能活性的纳米级膜结合囊泡,近年来因其在许多疾病诊断和治疗中发挥重要作用而受到越来越多的关注,但其在吸烟所致COPD中的作用及其机制的研究仍处于起步阶段,为此本文对EVs在CS所致COPD中的作用及其机制的国内外研究作一概述。
  • [1] Hikichi M, Mizumura K, Maruoka S, et al. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke[J]. Journal of Thoracic Disease, 2019, 11(S17): S2129 – S2140. doi: 10.21037/jtd.2019.10.43
    [2] Cipollina C, Bruno A, Fasola S, et al. Cellular and molecular signatures of oxidative stress in bronchial epithelial cell models injured by cigarette smoke extract[J]. International Journal of Molecular Sciences, 2022, 23(3): 1770. doi: 10.3390/ijms23031770
    [3] GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990 – 2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. The Lancet Respiratory Medicine, 2020, 8(6): 585 – 596. doi: 10.1016/S2213-2600(20)30105-3
    [4] Liu AB, Zhang X, Li RG, et al. Overexpression of the SARS-CoV-2 receptor ACE2 is induced by cigarette smoke in bronchial and alveolar epithelia[J]. The Journal of Pathology, 2021, 253(1): 17 – 30. doi: 10.1002/path.5555
    [5] 刘佳莉, 丁甘玲, 汪嘉琦, 等. 穿心莲内酯对香烟烟雾诱导小鼠肺损伤拮抗作用[J]. 中国公共卫生, 2022, 38(5): 585 – 588. doi: 10.11847/zgggws1136848
    [6] Mossina A, Lukas C, Merl-Pham J, et al. Cigarette smoke alters the secretome of lung epithelial cells[J]. Proteomics, 2017, 17(1/2): 1600243.
    [7] Kubo H. Extracellular vesicles in lung disease[J]. Chest, 2018, 153(1): 210 – 216. doi: 10.1016/j.chest.2017.06.026
    [8] Gomez N, James V, Onion D, et al. Extracellular vesicles and chronic obstructive pulmonary disease (COPD): a systematic review[J]. Respiratory Research, 2022, 23(1): 82. doi: 10.1186/s12931-022-01984-0
    [9] O’Farrell HE, Yang IA. Extracellular vesicles in chronic obstructive pulmonary disease (COPD)[J]. Journal of Thoracic Disease, 2019, 11(S17): S2141 – S2154. doi: 10.21037/jtd.2019.10.16
    [10] Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine[J]. European Respiratory Journal, 2019, 54(2): 1900651. doi: 10.1183/13993003.00651-2019
    [11] Lu Z, Van Eeckhoutte HP, Liu G, et al. Necroptosis signaling promotes inflammation, airway remodeling, and emphysema in chronic obstructive pulmonary disease[J]. American Journal of Respiratory and Critical Care Medicine, 2021, 204(6): 667 – 681. doi: 10.1164/rccm.202009-3442OC
    [12] Dang XM, He BB, Ning Q, et al. Alantolactone suppresses inflammation, apoptosis and oxidative stress in cigarette smoke-induced human bronchial epithelial cells through activation of Nrf2/HO-1 and inhibition of the NF-κB pathways[J]. Respiratory Research, 2020, 21(1): 95. doi: 10.1186/s12931-020-01358-4
    [13] Racanelli AC, Kikkers SA, Choi AMK, et al. Autophagy and inflammation in chronic respiratory disease[J]. Autophagy, 2018, 14(2): 221 – 232. doi: 10.1080/15548627.2017.1389823
    [14] Miao Q, Xu YF, Zhang HN, et al. Cigarette smoke induces ROS mediated autophagy impairment in human corneal epithelial cells[J]. Environmental Pollution, 2019, 245: 389 – 397. doi: 10.1016/j.envpol.2018.11.028
    [15] McGuinness AJ, Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms[J]. Journal of Clinical Medicine, 2017, 6(2): 21. doi: 10.3390/jcm6020021
    [16] Yang DQ, Zuo QN, Wang T, et al. Mitochondrial-targeting antioxidant SS-31 suppresses airway inflammation and oxidative stress induced by cigarette smoke[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 6644238.
    [17] Liu XM, Ma YM, Luo LJ, et al. Dihydroquercetin suppresses cigarette smoke induced ferroptosis in the pathogenesis of chronic obstructive pulmonary disease by activating Nrf2-mediated path-way[J]. Phytomedicine, 2022, 96: 153894. doi: 10.1016/j.phymed.2021.153894
    [18] Aspera-Werz RH, Ehnert S, Heid D, et al. Nicotine and cotinine inhibit catalase and glutathione reductase activity contributing to the impaired osteogenesis of SCP-1 cells exposed to cigarette smoke[J]. Oxidative Medicine and Cellular Longevity, 2018, 2018: 3172480.
    [19] Remigante A, Morabito R. Cellular and molecular mechanisms in oxidative stress-related diseases[J]. International Journal of Mole-cular Sciences, 2022, 23(14): 8017. doi: 10.3390/ijms23148017
    [20] Lakshmi SP, Reddy AT, Kodidhela LD, et al. Epigallocatechin gallate diminishes cigarette smoke-induced oxidative stress, lipid peroxidation, and inflammation in human bronchial epithelial cells[J]. Life Sciences, 2020, 259: 118260. doi: 10.1016/j.lfs.2020.118260
    [21] 王炳南, 张景熙, 白冲. 细胞衰老与慢性阻塞性肺疾病相关性研究进展[J]. 中华结核和呼吸杂志, 2021, 44(1): 59 – 63. doi: 10.3760/cma.j.cn112147-20200203-00047
    [22] Araya J, Tsubouchi K, Sato N, et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis[J]. Autophagy, 2019, 15(3): 510 – 526. doi: 10.1080/15548627.2018.1532259
    [23] Woldhuis RR, de Vries M, Timens W, et al. Link between increased cellular senescence and extracellular matrix changes in COPD[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2020, 319(1): L48 – L60. doi: 10.1152/ajplung.00028.2020
    [24] Guan RJ, Wang J, Cai Z, et al. Hydrogen sulfide attenuates cigarette smoke-induced airway remodeling by upregulating SIRT1 signaling pathway[J]. Redox Biology, 2020, 28: 101356. doi: 10.1016/j.redox.2019.101356
    [25] Kadota T, Fujita Y, Yoshioka Y, et al. Extracellular vesicles in chronic obstructive pulmonary disease[J]. International Journal of Molecular Sciences, 2016, 17(11): 1801. doi: 10.3390/ijms17111801
    [26] Ishikawa S, Matsumura K, Kitamura N, et al. Multi-omics analysis: repeated exposure of a 3D bronchial tissue culture to whole-cigarette smoke[J]. Toxicology in Vitro, 2019, 54: 251 – 262. doi: 10.1016/j.tiv.2018.10.001
    [27] Eapen MS, Lu WY, Hackett TL, et al. Increased myofibroblasts in the small airways, and relationship to remodelling and functional changes in smokers and COPD patients: potential role of epithelial-mesenchymal transition[J]. ERJ Open Research, 2021, 7(2): 00876 – 2020.
    [28] Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease[J]. Journal of Allergy and Clinical Immunology, 2016, 138(1): 16 – 27. doi: 10.1016/j.jaci.2016.05.011
    [29] Ryu AR, Kim DH, Kim E, et al. The potential roles of extracellular vesicles in cigarette smoke-associated diseases[J]. Oxidative Medicine and Cellular Longevity, 2018, 2018: 4692081.
    [30] Cordazzo C, Petrini S, Neri T, et al. Rapid shedding of proinflammatory microparticles by human mononuclear cells exposed to cigarette smoke is dependent on Ca2+ mobilization[J]. Inflammation Research, 2014, 63(7): 539 – 547. doi: 10.1007/s00011-014-0723-7
    [31] Moon HG, Kim SH, Gao JM, et al. CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2014, 307(4): L326 – L337. doi: 10.1152/ajplung.00102.2014
    [32] Chen Y, Li GP, Liu YX, et al. Translocation of endogenous danger signal HMGB1 from nucleus to membrane microvesicles in macrophages[J]. Journal of Cellular Physiology, 2016, 231(11): 2319 – 2326. doi: 10.1002/jcp.25352
    [33] Sheller S, Papaconstantinou J, Urrabaz-Garza R, et al. Amnion-epithelial-cell-derived exosomes demonstrate physiologic state of cell under oxidative stress[J]. PLoS One, 2016, 11(6): e0157614. doi: 10.1371/journal.pone.0157614
    [34] Ismail N, Wang YJ, Dakhlallah D, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer[J]. Blood, 2013, 121(6): 984 – 995. doi: 10.1182/blood-2011-08-374793
    [35] Ramírez-Hernández AA, Velázquez-Enríquez JM, Santos-Álvarez JC, et al. The role of extracellular vesicles in idiopathic pulmonary fibrosis progression: an approach on their therapeutics potential[J]. Cells, 2022, 11(4): 630. doi: 10.3390/cells11040630
    [36] Héliot A, Landkocz Y, Saint-Georges FR, et al. Smoker extracellular vesicles influence status of human bronchial epithelial cells[J]. International Journal of Hygiene and Environmental Health, 2017, 220(2): 445 – 454. doi: 10.1016/j.ijheh.2016.12.010
    [37] Benedikter BJ, Weseler AR, Wouters EFM, et al. Redox-dependent thiol modifications: implications for the release of extracellular vesicles[J]. Cellular and Molecular Life Sciences, 2018, 75(13): 2321 – 2337. doi: 10.1007/s00018-018-2806-z
    [38] Xu H, Ling M, Xue JC, et al. Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking[J]. Theranostics, 2018, 8(19): 5419 – 5433. doi: 10.7150/thno.27876
    [39] Fujita Y, Araya J, Ito S, et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis[J]. Journal of Extracellular Vesicles, 2015, 4(1): 28388. doi: 10.3402/jev.v4.28388
    [40] Finicelli M, Digilio FA, Galderisi U, et al. The emerging role of macrophages in chronic obstructive pulmonary disease: the potential impact of oxidative stress and extracellular vesicle on macrophage polarization and function[J]. Antioxidants (Basel), 2022, 11(3): 464. doi: 10.3390/antiox11030464
    [41] 陈圳, 苏薇薇, 王永刚, 等. 细胞外囊泡在慢性阻塞性肺疾病中的作用[J]. 生理科学进展, 2021, 52(6): 466 – 470. doi: 10.3969/j.issn.0559-7765.2021.06.013
  • 加载中
计量
  • 文章访问数:  40
  • HTML全文浏览量:  22
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 网络出版日期:  2023-01-10

目录

    /

    返回文章
    返回