高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型冠状病毒疫苗对奥密克戎变异株免疫保护效果研究进展

曹志强 卢莉 张卫 李娟 温小菁 吴疆

曹志强, 卢莉, 张卫, 李娟, 温小菁, 吴疆. 新型冠状病毒疫苗对奥密克戎变异株免疫保护效果研究进展[J]. 中国公共卫生, 2022, 38(9): 1224-1228. doi: 10.11847/zgggws1139775
引用本文: 曹志强, 卢莉, 张卫, 李娟, 温小菁, 吴疆. 新型冠状病毒疫苗对奥密克戎变异株免疫保护效果研究进展[J]. 中国公共卫生, 2022, 38(9): 1224-1228. doi: 10.11847/zgggws1139775
CAO Zhi-qiang, LU Li, ZHANG Wei, . Immunological and preventive effects of COVID-19 vaccine against Omicron variant – a review of research progress[J]. Chinese Journal of Public Health, 2022, 38(9): 1224-1228. doi: 10.11847/zgggws1139775
Citation: CAO Zhi-qiang, LU Li, ZHANG Wei, . Immunological and preventive effects of COVID-19 vaccine against Omicron variant – a review of research progress[J]. Chinese Journal of Public Health, 2022, 38(9): 1224-1228. doi: 10.11847/zgggws1139775

新型冠状病毒疫苗对奥密克戎变异株免疫保护效果研究进展

doi: 10.11847/zgggws1139775
详细信息
    作者简介:

    曹志强(1989 – ),男,山东临沂人,医师,博士,研究方向:从事传染病流行病学研究

    通信作者:

    吴疆,E-mail:wj81732@hotmail.com

  • 中图分类号: R 186

Immunological and preventive effects of COVID-19 vaccine against Omicron variant – a review of research progress

  • 摘要: 新型冠状病毒(新冠病毒)奥密克戎变异株自2021年11月被发现后,快速地在世界各地广泛传播,目前已成为全球新冠病毒传播的主要流行毒株。在奥密克戎变异株大流行的背景下,以新冠病毒原型株为基础构建的新型冠状病毒疫苗(新冠病毒疫苗)对奥密克戎变异株感染的免疫保护效果成为了全球关注的焦点,许多学者围绕不同类型新冠病毒疫苗及不同免疫策略开展了新冠病毒疫苗对奥密克戎变异株免疫保护效果的研究,以观察疫苗对奥密克戎变异株感染的保护作用。本文系统地概述了2021年11月1日 — 2022年7月26日发表的关于新冠病毒疫苗对奥密克戎变异株免疫学效果和保护效果的研究报道,为新冠病毒疫苗接种策略的优化调整及其研发等公共卫生决策提供参考依据。
  • [1] World Health Organization. Classification of Omicron (B. 1.1. 529): SARS-CoV-2 variant of concern[EB/OL]. (2021 – 11 – 26)[2022 – 06 – 01]. https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern.
    [2] Khandia R, Singhal S, Alqahtani T, et al. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic[J]. Environmental Research, 2022, 209: 112816. doi: 10.1016/j.envres.2022.112816
    [3] Islam R, Hossain J. Detection of SARS-CoV-2 Omicron (B. 1.1. 529) variant has created panic among the people across the world: what should we do right now?[J]. Journal of Medical Virology, 2022, 94(5): 1768 – 1769. doi: 10.1002/jmv.27546
    [4] 香港特别行政区政府卫生署卫生防疫中心. 2019冠状病毒病死亡个案报告初步数据分析[EB/OL]. (2021 – 07 – 21)[2021 – 07 – 26]. https://www.covidvaccine.gov.hk/pdf/death_analysis.pdf.
    [5] World Health Organization. Coronavirus (COVID-19) dashboard[EB/OL]. (2022 – 07 – 01)[2022 – 07 – 10]. https://covid19.who.int/?mapFilter=vaccinations.
    [6] Harder T, Koch J, Vygen-Bonnet S, et al. Efficacy and effectiveness of COVID-19 vaccines against SARS-CoV-2 infection: interim results of a living systematic review, 1 January to 14 May 2021[J]. Euro Surveillance, 2021, 26(28): 2100563.
    [7] Fan YJ, Chan KH, Hung IFN. Safety and efficacy of COVID-19 vaccines: a systematic review and meta-analysis of different vac-cines at phase 3[J]. Vaccines, 2021, 9(9): 989. doi: 10.3390/vaccines9090989
    [8] Feikin DR, Higdon MM, Abu-Raddad LJ, et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression[J]. The Lancet, 2022, 399(10328): 924 – 944. doi: 10.1016/S0140-6736(22)00152-0
    [9] Yu XL, Qi XR, Cao Y, et al. Three doses of an inactivation-based COVID-19 vaccine induces cross-neutralizing immunity against the SARS CoV-2 Omicron variant[J]. Emerging Microbes and Infections, 2022, 11(1): 749 – 752. doi: 10.1080/22221751.2022.2044271
    [10] Wang K, Jia ZJ, Bao LL, et al. Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants[J]. Nature, 2022, 603(7903): 919 – 925. doi: 10.1038/s41586-022-04466-x
    [11] Lusvarghi S, Pollett SD, Neerukonda SN, et al. SARS-CoV-2 BA. 1 variant is neutralized by vaccine booster-elicited serum but evades most convalescent serum and therapeutic antibodies[J]. Science Translational Medicine, 2022, 14(645): eabn8543. doi: 10.1126/scitranslmed.abn8543
    [12] Evans JP, Zeng C, Qu PK, et al. Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1, BA.1.1, and BA.2[J]. Cell Host and Microbe, 2022, doi: 10.1016/j.chom.2022.04.014.
    [13] Arora P, Zhang L, Krüger N, et al. SARS-CoV-2 Omicron sublineages show comparable cell entry but differential neutraliza-tion by therapeutic antibodies[J]. Cell Host and Microbe, 2022, doi: 10.1016/j.chom.2022.04.017.
    [14] Pajon R, Doria-Rose NA, Shen XY, et al. SARS-CoV-2 Omicron variant neutralization after mRNA-1273 booster vaccination[J]. The New England Journal of Medicine, 2022, 386(11): 1088 – 1091. doi: 10.1056/NEJMc2119912
    [15] Bartsch YC, Tong X, Kang J, et al. Omicron variant spike-specific antibody binding and Fc activity are preserved in recipients of mRNA or inactivated COVID-19 vaccines[J]. Science Translational Medicine, 2022, 14(642): eabn9243. doi: 10.1126/scitranslmed.abn9243
    [16] Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA. 1 serum[J]. Cell, 2022, 185(14): 2422 – 2433.e13. doi: 10.1016/j.cell.2022.06.005
    [17] Qu PK, Faraone J, Evans JP, et al. Neutralization of the SARS-CoV-2 Omicron BA. 4/5 and BA.2.12.1 subvariants[J]. The New England Journal of Medicine, 2022, 386(26): 2526 – 2528. doi: 10.1056/NEJMc2206725
    [18] Clemens SAC, Weckx L, Clemens R, et al. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study[J]. The Lancet, 2022, 399(10324): 521 – 529. doi: 10.1016/S0140-6736(22)00094-0
    [19] Pérez-Then E, Lucas C, Monteiro VS, et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination[J]. Nature Medicine, 2022, 28(3): 481 – 485. doi: 10.1038/s41591-022-01705-6
    [20] Cheng SMS, Mok CKP, Leung YWY, et al. Neutralizing antibodies against the SARS-CoV-2 Omicron variant BA. 1 following homologous and heterologous CoronaVac or BNT162b2 vaccination[J]. Nature Medicine, 2022, 28(3): 486 – 489. doi: 10.1038/s41591-022-01704-7
    [21] Zuo FL, Abolhassani H, Du LK, et al. Heterologous immunization with inactivated vaccine followed by mRNA-booster elicits strong immunity against SARS-CoV-2 Omicron variant[J]. Nature Communications, 2022, 13(1): 2670. doi: 10.1038/s41467-022-30340-5
    [22] Zhao X, Zhang R, Qiao ST, et al. Omicron SARS-CoV-2 neutralization from inactivated and ZF2001 vaccines[J]. The New England Journal of Medicine, 2022, 387(3): 277 – 280. doi: 10.1056/NEJMc2206900
    [23] Fendler A, Shepherd STC, Au L, et al. Omicron neutralising antibodies after third COVID-19 vaccine dose in patients with cancer[J]. The Lancet, 2022, 399(10328): 905 – 907. doi: 10.1016/S0140-6736(22)00147-7
    [24] Zeng C, Evans JP, Chakravarthy K, et al. COVID-19 mRNA booster vaccines elicit strong protection against SARS-CoV-2 Omicron variant in patients with cancer[J]. Cancer Cell, 2022, 40(2): 117 – 119. doi: 10.1016/j.ccell.2021.12.014
    [25] Alidjinou EK, Demaret J, Corroyer-Simovic B, et al. Immunogeni-city of BNT162b2 vaccine booster against SARS-CoV-2 Delta and Omicron variants in nursing home residents: a prospective obser-vational study in older adults aged from 68 to 98 years[J]. The Lancet Regional Health – Europe, 2022, 17: 100385. doi: 10.1016/j.lanepe.2022.100385
    [26] Davidov Y, Indenbaum V, Tsaraf K, et al. A third dose of the BNT162b2 mRNA vaccine significantly improves immune re-sponses among liver transplant recipients[J]. Journal of Hepat-ology, 2022. doi: 10.1016/j.jhep.2022.03.042.
    [27] Lee ARYB, Wong SY, Chai LYA, et al. Efficacy of covid-19 vaccines in immunocompromised patients: systematic review and meta-analysis[J]. BMJ, 2022, 376: e068632.
    [28] Lu L, Chen LL, Zhang RRQ, et al. Boosting of serum neutralizing activity against the Omicron variant among recovered COVID-19 patients by BNT162b2 and CoronaVac vaccines[J]. eBioMedicine, 2022, 79: 103986. doi: 10.1016/j.ebiom.2022.103986
    [29] Ai JW, Wang X, He XY, et al. Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages[J]. Cell Host and Microbe, 2022, doi: 10.1016/j.chom.2022.05.001.
    [30] Yao L, Zhu KL, Jiang XL, et al. Omicron subvariants escape antibodies elicited by vaccination and BA.2.2 infection[J]. The Lancet Infectious Diseases, 2022, 22(8): 1116 – 1117. doi: 10.1016/S1473-3099(22)00410-8
    [31] Du YX, Chen L, Shi Y. Booster COVID-19 vaccination against the SARS-CoV-2 Omicron variant: a systematic review[J]. Human Vaccines and Immunotherapeutics, 2022, 18(5): 2062983. doi: 10.1080/21645515.2022.2062983
    [32] Ai JW, Zhang HC, Zhang Y, et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost[J]. Emerging Microbes and Infections, 2022, 11(1): 337 – 343. doi: 10.1080/22221751.2021.2022440
    [33] Cao YL, Yisimayi A, Jian FC, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection[J]. Nature, 2022, doi: 10.1038/s41586-022-04980-y.
    [34] Wang J, Deng CGX, Liu M, et al. Four doses of the inactivated SARS-CoV-2 vaccine redistribute humoral immune responses away from the Receptor Binding Domain[J]. medRxiv, 2022, doi: 10.1101/2022.02.19.22271215.
    [35] Tarke A, Coelho CH, Zhang ZL, et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron[J]. Cell, 2022, 185(5): 847 – 859.e11. doi: 10.1016/j.cell.2022.01.015
    [36] Li ZW, Xiang TD, Liang BY, et al. Characterization of SARS-CoV-2-specific humoral and cellular immune responses induced by inactivated COVID-19 vaccines in a real-world setting[J]. Frontiers in Immunology, 2021, 12: 802858. doi: 10.3389/fimmu.2021.802858
    [37] Wang CY, Hwang KP, Kuo HK, et al. A multitope SARS-CoV-2 vaccine provides long-lasting B cell and T cell immunity against Delta and Omicron variants[J]. The Journal of Clinical Investiga-tion, 2022, 132(10): e157707. doi: 10.1172/JCI157707
    [38] Zhang ZL, Mateus J, Coelho CH, et al. Humoral and cellular immune memory to four COVID-19 vaccines[J]. Cell, 2022, 185(14): 2434 – 2451.e17. doi: 10.1016/j.cell.2022.05.022
    [39] Munro APS, Feng S, Janani L, et al. Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial[J]. The Lancet Infectious Diseases, 2022, 22(8): 1131 – 1141. doi: 10.1016/S1473-3099(22)00271-7
    [40] Jergović M, Uhrlaub JL, Watanabe M, et al. Competent immune responses to SARS-CoV-2 variants in older adults following two doses of mRNA vaccination[J]. Nature Communications, 2022, 13(1): 2891. doi: 10.1038/s41467-022-30617-9
    [41] Parry H, Bruton R, Roberts T, et al. COVID-19 vaccines elicit robust cellular immunity and clinical protection in chronic lymphocytic leukemia[J]. Cancer Cell, 2022, 40(6): 584 – 586. doi: 10.1016/j.ccell.2022.05.001
    [42] van Leeuwen LPM, Geurtsvankessel CH, Ellerbroek PM, et al. Immunogenicity of the mRNA-1273 COVID-19 vaccine in adult patients with inborn errors of immunity[J]. The Journal of Allergy and Clinical Immunology, 2022, 149(6): 1949 – 1957. doi: 10.1016/j.jaci.2022.04.002
    [43] Romero-Olmedo AJ, Schulz AR, Hochstätter S, et al. Dynamics of humoral and T-cell immunity after three BNT162b2 vaccinations in adults older than 80 years[J]. The Lancet Infectious Diseases, 2022, 22(5): 588 – 589. doi: 10.1016/S1473-3099(22)00219-5
    [44] Tseng HF, Ackerson BK, Luo Y, et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants[J]. Nature Medicine, 2022, 28(5): 1063 – 1071. doi: 10.1038/s41591-022-01753-y
    [45] Jara A, Undurraga EA, Zubizarreta JR, et al. Effectiveness of CoronaVac in children 3 – 5 years of age during the SARS-CoV-2 Omicron outbreak in Chile[J]. Nature Medicine, 2022, 28(7): 1377 – 1380. doi: 10.1038/s41591-022-01874-4
    [46] Andrews N, Stowe J, Kirsebom F, et al. Covid-19 vaccine effectiveness against the Omicron (B. 1.1. 529) variant[J]. The New England Journal of Medicine, 2022, 386(16): 1532 – 1546. doi: 10.1056/NEJMoa2119451
    [47] Bar-On YM, Goldberg Y, Mandel M, et al. Protection by a fourth dose of BNT162b2 against Omicron in israel[J]. The New England Journal of Medicine, 2022, 386(18): 1712 – 1720. doi: 10.1056/NEJMoa2201570
    [48] Magen O, Waxman JG, Makov-Assif M, et al. Fourth dose of BNT162b2 mRNA Covid-19 vaccine in a nationwide setting[J]. The New England Journal of Medicine, 2022, 386(17): 1603 – 1614. doi: 10.1056/NEJMoa2201688
    [49] Collie S, Champion J, Moultrie H, et al. Effectiveness of BNT162b2 vaccine against Omicron variant in South Africa[J]. The New England Journal of Medicine, 2022, 386(5): 494 – 496. doi: 10.1056/NEJMc2119270
    [50] Kirsebom F, Andrews N, Sachdeva R, et al. Effectiveness of ChAdOx1-S COVID-19 booster vaccination against the Omicron and delta variants in England[J]. medRxiv, 2022, doi: 10.1101/2022.04.29.22274483.
    [51] Accorsi EK, Britton A, Fleming-Dutra KE, et al. Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and delta variants[J]. JAMA, 2022, 327(7): 639 – 651. doi: 10.1001/jama.2022.0470
    [52] Abu-Raddad LJ, Chemaitelly H, Ayoub HH, et al. Effect of mRNA vaccine boosters against SARS-CoV-2 Omicron infection in Qatar[J]. The New England Journal of Medicine, 2022, 386(19): 1804 – 1816. doi: 10.1056/NEJMoa2200797
    [53] Tartof SY, Slezak JM, Puzniak L, et al. Durability of BNT162b2 vaccine against hospital and emergency department admissions due to the omicron and delta variants in a large health system in the USA: a test-negative case-control study[J]. The Lancet Respiratory Medicine, 2022, 10(7): 689 – 699. doi: 10.1016/S2213-2600(22)00101-1
    [54] Fleming-Dutra KE, Britton A, Shang N, et al. Association of prior BNT162b2 COVID-19 vaccination with symptomatic SARS-CoV-2 infection in children and adolescents during omicron predo-minance[J]. JAMA, 2022, 327(22): 2210 – 2219. doi: 10.1001/jama.2022.7493
    [55] Cohen-Stavi CJ, Magen O, Barda N, et al. BNT162b2 vaccine effectiveness against Omicron in children 5 to 11 years of age[J]. The New England Journal of Medicine, 2022, 387(3): 227 – 236. doi: 10.1056/NEJMoa2205011
    [56] Price AM, Olson SM, Newhams MM, et al. BNT162b2 protection against the Omicron variant in children and adolescents[J]. The New England Journal of Medicine, 2022, 386(20): 1899 – 1909. doi: 10.1056/NEJMoa2202826
    [57] Martellucci CA, Flacco ME, Soldato G, et al. Effectiveness of COVID-19 vaccines in the general population of an Italian region before and during the Omicron wave[J]. Vaccines (Basel), 2022, 10(5): 662. doi: 10.3390/vaccines10050662
    [58] McMenamin ME, Nealon J, Lin Y, et al. Vaccine effectiveness of one, two, and three doses of BNT162b2 and CoronaVac against COVID-19 in Hong Kong: a population-based observational study[J]. The Lancet Infectious Diseases, 2022, doi: 10.1016/S1473-3099(22)00345-0.
    [59] Muhsen K, Maimon N, Mizrahi AY, et al. Association of receipt of the fourth BNT162b2 dose with omicron infection and COVID-19 hospitalizations among residents of long-term care facilities[J]. JAMA Internal Medicine, 2022, doi: 10.1001/jamainternmed.2022.2658.
    [60] Puhach O, Adea K, Hulo N, et al. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2[J]. Nature Medicine, 2022, 28(7): 1491 – 1500. doi: 10.1038/s41591-022-01816-0
    [61] Baker JM, Nakayama JY, O'hegarty M, et al. SARS-CoV-2 B.1.1.529 (Omicron) variant transmission within households – Four U. S. Jurisdictions, November 2021 – February 2022[J]. MMWR Morbidity and Mortality Weekly Report, 2022, 71(9): 341 – 346. doi: 10.15585/mmwr.mm7109e1
    [62] Madewell ZJ, Yang Y, Longini IM Jr, et al. Household secondary attack rates of SARS-CoV-2 by variant and vaccination status: an updated systematic review and meta-analysis[J]. JAMA Network Open, 2022, 5(4): e229317. doi: 10.1001/jamanetworkopen.2022.9317
    [63] Lyngse FP, Kirkeby CT, Denwood M, et al. Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2: evidence from danish households[J]. medRxiv, 2022, doi: 10.1101/2022.01.28.22270044.
    [64] Jalali N, Brustad HK, Frigessi A, et al. Increased household transmission and immune escape of the SARS-CoV-2 Omicron variant compared to the Delta variant: evidence from Norwegian contact tracing and vaccination data[J]. medRxiv, 2022, doi: 10.1101/2022.02.07.22270437.
    [65] World Health Organization. WHO target product profiles for COVID-19 vaccines. Revised version April 2022[EB/OL]. (2022 – 04 – 01)[2022 – 06 – 01]. https://www.who.int/publications/m/item/who-target-product-profiles-for-covid-19-vaccines.
    [66] Hoffmann M, Krüger N, Schulz S, et al. The Omicron variant is highly resistant against antibody-mediated neutralization: implica-tions for control of the COVID-19 pandemic[J]. Cell, 2022, 185(3): 447 – 456.e11. doi: 10.1016/j.cell.2021.12.032
  • 加载中
计量
  • 文章访问数:  758
  • HTML全文浏览量:  438
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 接收日期:  2022-07-18
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回