高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿尔茨海默病血液生物标志物研究进展

连淑丽 徐晶 袁满琼 方亚

连淑丽, 徐晶, 袁满琼, 方亚. 阿尔茨海默病血液生物标志物研究进展[J]. 中国公共卫生, 2023, 39(5): 660-664. doi: 10.11847/zgggws1140159
引用本文: 连淑丽, 徐晶, 袁满琼, 方亚. 阿尔茨海默病血液生物标志物研究进展[J]. 中国公共卫生, 2023, 39(5): 660-664. doi: 10.11847/zgggws1140159
LIAN Shuli, XU Jing, YUAN Manqiong, . Blood-based biomarkers in Alzheimer′s disease: a review[J]. Chinese Journal of Public Health, 2023, 39(5): 660-664. doi: 10.11847/zgggws1140159
Citation: LIAN Shuli, XU Jing, YUAN Manqiong, . Blood-based biomarkers in Alzheimer′s disease: a review[J]. Chinese Journal of Public Health, 2023, 39(5): 660-664. doi: 10.11847/zgggws1140159

阿尔茨海默病血液生物标志物研究进展

doi: 10.11847/zgggws1140159
基金项目: 国家自然科学基金(81973144)
详细信息
    作者简介:

    连淑丽(1991 – ),女,福建漳州人,硕士在读,研究方向:老年认知健康

    通信作者:

    方亚,E-mail:fangya@xmu.edu.cn

  • 中图分类号: R 749.16

Blood-based biomarkers in Alzheimer′s disease: a review

  • 摘要: 阿尔茨海默病(Alzheimer′s disease, AD)是一种起病隐匿的进行性发展的神经系统变性疾病,其病程长,疾病负担沉重,目前尚无治愈药物,但在早期阶段进行干预可延缓其病情进展,因此早期诊断对AD的防治尤为重要。脑脊液检测需要进行腰椎穿刺,侵入性强;而影像学检测价格昂贵且对设备要求高,因此这2种检测均无法作为AD高危人群大规模筛查手段进行推广。血液样本采集为微创伤性、快速、价格经济,且部分血液生物标志物在AD临床症状出现前即已发生显著变化,由此检测血液生物标志物可作为筛查AD早期患者的理想手段。本研究就AD的4种血液生物标志物,即β淀粉样蛋白(β-amyloid, Aβ)、Tau蛋白、β位点裂解酶1(beta-site APP cleaving enzyme 1, BACE1)、神经丝蛋白轻链(neurofilament light chain, NfL)及多标志物联合检测的近年的研究进展作一概述,以为AD的早期诊断、早干预、早治疗提供依据。
  • [1] Alzheimer′s Disease International. World Alzheimer Report 2018: the state of the art of dementia research: new frontiers[EB/OL]. (2018 – 09 – 21)[2022 – 06 – 16]. https://www.alzint.org/reports-resources/page/7/.
    [2] 王英全, 梁景宏, 贾瑞霞, 等. 2020 — 2050年中国阿尔茨海默病患病情况预测研究[J]. 阿尔茨海默病及相关病, 2019, 2(1): 289 – 298. doi: 10.3969/j.issn.2096-5516.2019.01.012
    [3] Wong W. Economic burden of Alzheimer disease and managed care considerations[J]. The American Journal of Managed Care, 2020, 26(S8): S177 – S183.
    [4] Jia JP, Wei CB, Chen SQ, et al. The cost of Alzheimer′s disease in China and re-estimation of costs worldwide[J]. Alzheimers′s and Dementia, 2018, 14(4): 483 – 491. doi: 10.1016/j.jalz.2017.12.006
    [5] McDade E, Bateman RJ. Stop Alzheimer′s before it starts[J]. Nature, 2017, 547(7662): 153 – 155. doi: 10.1038/547153a
    [6] Teunissen CE, Verberk IMW, Thijssen EH, et al. Blood-based biomarkers for Alzheimer′s disease: towards clinical implementa-tion[J]. The Lancet Neurology, 2022, 21(1): 66 – 77. doi: 10.1016/S1474-4422(21)00361-6
    [7] Hampel H, O′Bryant SE, Molinuevo JL, et al. Blood-based bio-markers for Alzheimer disease: mapping the road to the clinic[J]. Nature Reviews Neurology, 2018, 14(11): 639 – 652. doi: 10.1038/s41582-018-0079-7
    [8] Leong YQ, Ng KY, Chye SM, et al. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death[J]. Metabolic Brain Disease, 2020, 35(1): 11 – 30. doi: 10.1007/s11011-019-00516-y
    [9] Sharma P, Sharma A, Fayaz F, et al. Biological signatures of Alzheimer′s disease[J]. Current Topics in Medicinal Chemistry, 2020, 20(9): 770 – 781. doi: 10.2174/1568026620666200228095553
    [10] Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research frame-work: toward a biological definition of Alzheimer′s disease[J]. Alzheimer′s and Dementia, 2018, 14(4): 535 – 562. doi: 10.1016/j.jalz.2018.02.018
    [11] Verberk IMW, Slot RE, Verfaillie SCJ, et al. Plasma amyloid as prescreener for the earliest Alzheimer pathological changes[J]. Annals Neurology, 2018, 84(5): 648 – 658. doi: 10.1002/ana.25334
    [12] Schindler SE, Bollinger JG, Ovod V, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis[J]. Neurology, 2019, 93(17): e1647 – e1659. doi: 10.1212/WNL.0000000000008081
    [13] Palmqvist S, Insel PS, Stomrud E, et al. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer′s disease[J]. EMBO Molecular Medicine, 2019, 11(12): e11170.
    [14] Castillo-Mendieta T, Arana-Lechuga Y, Campos-Peña V, et al. Plasma levels of amyloid-β peptides and tau protein in Mexican patients with Alzheimer′s disease[J]. Journal of Alzheimer′s Disease, 2021, 82(S1): S271 – S281. doi: 10.3233/JAD-200912
    [15] 田金洲, 解恒革, 王鲁宁, 等. 中国阿尔茨海默病痴呆诊疗指南(2020年版)[J]. 中华老年医学杂志, 2021, 40(3): 269 – 283. doi: 10.3760/cma.j.issn.0254-9026.2021.03.001
    [16] Lövheim H, Elgh F, Johansson A, et al. Plasma concentrations of free amyloid β cannot predict the development of Alzheimer′s disease[J]. Alzheimer′s and Dementia, 2017, 13(7): 778 – 782. doi: 10.1016/j.jalz.2016.12.004
    [17] Hsu JL, Lee WJ, Liao YC, et al. The clinical significance of plasma clusterin and Aβ in the longitudinal follow-up of patients with Alzheimer′s disease[J]. Alzheimer′s Research and Therapy, 2017, 9(1): 91. doi: 10.1186/s13195-017-0319-x
    [18] Korecka M, Shaw LM. Mass spectrometry-based methods for robust measurement of Alzheimer′s disease biomarkers in biological fluids[J]. Journal of Neurochemistry, 2021, 159(2): 211 – 233. doi: 10.1111/jnc.15465
    [19] Pyun JM, Ryu JS, Lee R, et al. Plasma amyloid-β oligomerization tendency predicts amyloid PET positivity[J]. Clinical Interventions in Aging, 2021, 16: 749 – 755. doi: 10.2147/CIA.S312473
    [20] Meng X, Li T, Wang X, et al. Association between increased levels of amyloid-β oligomers in plasma and episodic memory loss in Alzheimer′s disease[J]. Alzheimer’s Research and Therapy, 2019, 11(1): 89. doi: 10.1186/s13195-019-0535-7
    [21] Chong FP, Ng KY, Koh RY, et al. Tau proteins and tauopathies in Alzheimer′s disease[J]. Cellular and Molecular Neurobiology, 2018, 38(5): 965 – 980. doi: 10.1007/s10571-017-0574-1
    [22] Sinsky J, Pichlerova K, Hanes J. Tau protein interaction partners and their roles in Alzheimer′s disease and other tauopathies[J]. International Journal of Molecular Sciences, 2021, 22(17): 9207. doi: 10.3390/ijms22179207
    [23] Ding XL, Zhang ST, Jiang LJ, et al. Ultrasensitive assays for detection of plasma tau and phosphorylated tau 181 in Alzheimer′s disease: a systematic review and meta-analysis[J]. Translational Neurodegeneration, 2021, 10(1): 10. doi: 10.1186/s40035-021-00234-5
    [24] 王雪莹, 李明, 卢志明. 阿尔茨海默病生物标志物应用指南及研究进展[J]. 中华预防医学杂志, 2022, 56(3): 262 – 269. doi: 10.3760/cma.j.cn112150-20210916-00902
    [25] Jagust WJ, Landau SM, Alzheimer′s Disease Neuroimaging Initiative. Temporal dynamics of β-amyloid accumulation in aging and Alzheimer disease[J]. Neurology, 2021, 96(9): e1347 – e1357. doi: 10.1212/WNL.0000000000011524
    [26] Sugarman MA, Zetterberg H, Blennow K, et al. A longitudinal examination of plasma neurofilament light and total tau for the clinical detection and monitoring of Alzheimer′s disease[J]. Neurobiology of Aging, 2020, 94: 60 – 70. doi: 10.1016/j.neurobiolaging.2020.05.011
    [27] Shi YC, Lu X, Zhang LH, et al. Potential value of plasma amyloid-β, total tau, and neurofilament light for identification of early Alzheimer′s disease[J]. ACS Chemical Neuroscience, 2019, 10(8): 3479 – 3485. doi: 10.1021/acschemneuro.9b00095
    [28] Raket LL, Kühnel L, Schmidt E, et al. Utility of plasma neurofilament light and total tau for clinical trials in Alzheimer′s disease[J]. Alzheimer′s and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12(1): e12099.
    [29] Jiao B, Liu H, Guo LN, et al. Performance of plasma amyloid β, total tau, and neurofilament light chain in the identification of probable Alzheimer′s disease in South China[J]. Frontiers in Aging Neuroscience, 2021, 13: 749649. doi: 10.3389/fnagi.2021.749649
    [30] Müller S, Preische O, Göpfert JC, et al. Tau plasma levels in subjective cognitive decline: results from the DELCODE study[J]. Scientific Reports, 2017, 7(1): 9529. doi: 10.1038/s41598-017-08779-0
    [31] Pase MP, Beiser AS, Himali JJ, et al. Assessment of plasma total tau level as a predictive biomarker for dementia and related endophenotypes[J]. JAMA Neurology, 2019, 76(5): 598 – 606. doi: 10.1001/jamaneurol.2018.4666
    [32] Fossati S, Ramos Cejudo J, Debure L, et al. Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer′s disease[J]. Alzheimer′s and Dementia:Diagnosis, Assessment and Disease Monitoring, 2019, 11(1): 483 – 492.
    [33] Barthélemy NR, Horie K, Sato C, et al. Blood plasma phosphory-lated-tau isoforms track CNS change in Alzheimer′s disease[J]. Journal of Experimental Medicine, 2020, 217(11): e20200861. doi: 10.1084/jem.20200861
    [34] Thijssen EH, La Joie R, Strom A, et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer′s disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study[J]. The Lancet Neurology, 2021, 20(9): 739 – 752. doi: 10.1016/S1474-4422(21)00214-3
    [35] Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer′s disease: a diagnostic perfor-mance and prediction modelling study using data from four prospec-tive cohorts[J]. The Lancet Neurology, 2020, 19(5): 422 – 433. doi: 10.1016/S1474-4422(20)30071-5
    [36] Clark C, Lewczuk P, Kornhuber J, et al. Plasma neurofilament light and phosphorylated tau 181 as biomarkers of Alzheimer′s disease pathology and clinical disease progression[J]. Alzheimer′s Re-search and Therapy, 2021, 13(1): 65. doi: 10.1186/s13195-021-00805-8
    [37] Chen SD, Huang YY, Shen XN, et al. Longitudinal plasma phosphorylated tau 181 tracks disease progression in Alzheimer′s disease[J]. Translational Psychiatry, 2021, 11(1): 356. doi: 10.1038/s41398-021-01476-7
    [38] Hansson O, Cullen N, Zetterberg H, et al. Plasma phosphorylated tau181 and neurodegeneration in Alzheimer’s disease[J]. Annals of Clinical and Translational Neurology, 2021, 8(1): 259 – 265. doi: 10.1002/acn3.51253
    [39] Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer′s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzhei-mer′s dementia[J]. Nature Medicine, 2020, 26(3): 379 – 386. doi: 10.1038/s41591-020-0755-1
    [40] Cullen NC, Leuzy A, Palmqvist S, et al. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations[J]. Nature Aging, 2021, 1(1): 114 – 123. doi: 10.1038/s43587-020-00003-5
    [41] Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neuro-degenerative disorders[J]. JAMA, 2020, 324(8): 772 – 781. doi: 10.1001/jama.2020.12134
    [42] Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer′s disease pathology[J]. Acta Neuropathologica, 2021, 141(5): 709 – 724. doi: 10.1007/s00401-021-02275-6
    [43] Cervellati C, Valacchi G, Zuliani G. Early elevation of BACE1 in dementia[J]. Aging, 2021, 13(22): 24480 – 24481. doi: 10.18632/aging.203727
    [44] Molinuevo JL, Ayton S, Batrla R, et al. Current state of Alzheimer′s fluid biomarkers[J]. Acta Neuropathologica, 2018, 136(6): 821 – 853. doi: 10.1007/s00401-018-1932-x
    [45] Shen Y, Wang HB, Sun QY, et al. Increased plasma beta-secretase 1 may predict conversion to Alzheimer′s disease dementia in indi-viduals with mild cognitive impairment[J]. Biological Psychiatry, 2018, 83(5): 447 – 455. doi: 10.1016/j.biopsych.2017.02.007
    [46] Cervellati C, Valacchi G, Zuliani G. BACE1: from biomarker to Alzheimer′s disease therapeutical target[J]. Aging, 2021, 13(9): 12299 – 12300. doi: 10.18632/aging.203064
    [47] Vakilian A, Masoumi J, Mirzaee S, et al. Expression analysis of beta-secretase 1 (BACE1) enzyme in peripheral blood of patients with Alzheimer′s disease[J]. Caspian Journal of Internal Medicine, 2019, 10(3): 276 – 280.
    [48] Vergallo A, Lemercier P, Cavedo E, et al. Plasma β-secretase1 concentrations correlate with basal forebrain atrophy and neuro-degeneration in cognitively healthy individuals at risk for AD[J]. Alzheimer’s and Dementia, 2021, 17(4): 629 – 640. doi: 10.1002/alz.12228
    [49] Zhang M, Zhong XM, Shi HS, et al. BACE1 and other Alzheimer′s-related biomarkers in cerebrospinal fluid and plasma distinguish Alzheimer′s disease patients from cognitively-impaired neuro-syphilis patients[J]. Journal of Alzheimer’s Disease, 2020, 77(1): 313 – 322. doi: 10.3233/JAD-200362
    [50] Neumann U, Ufer M, Jacobson LH, et al. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer′s disease[J]. EMBO Molecular Medicine, 2018, 10(11): e9316.
    [51] Hampel H, Vassar R, De Strooper B, et al. The β-secretase BACE1 in Alzheimer′s disease[J]. Biological Psychiatry, 2021, 89(8): 745 – 756. doi: 10.1016/j.biopsych.2020.02.001
    [52] Willemse EAJ, Scheltens P, Teunissen CE, et al. A neurologist′s perspective on serum neurofilament light in the memory clinic: a prospective implementation study[J]. Alzheimer′s Research and Therapy, 2021, 13(1): 101. doi: 10.1186/s13195-021-00841-4
    [53] Sánchez-Valle R, Heslegrave A, Foiani MS, et al. Serum neurofilament light levels correlate with severity measures and neurodegeneration markers in autosomal dominant Alzheimer′s disease[J]. Alzheimer’s Research and Therapy, 2018, 10(1): 113. doi: 10.1186/s13195-018-0439-y
    [54] Weston PSJ, Poole T, Ryan NS, et al. Serum neurofilament light in familial Alzheimer disease: a marker of early neurodegeneration[J]. Neurology, 2017, 89(21): 2167 – 2175. doi: 10.1212/WNL.0000000000004667
    [55] Weston PSJ, Poole T, O′Connor A, et al. Longitudinal measurement of serum neurofilament light in presymptomatic familial Alzheimer′s disease[J]. Alzheimer′s Research and Therapy, 2019, 11(1): 19. doi: 10.1186/s13195-019-0472-5
    [56] Preische O, Schultz SA, Apel A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer′s disease[J]. Nature Medicine, 2019, 25(2): 277 – 283. doi: 10.1038/s41591-018-0304-3
    [57] Andersson E, Janelidze S, Lampinen B, et al. Blood and cerebro-spinal fluid neurofilament light differentially detect neurodegenera-tion in early Alzheimer′s disease[J]. Neurobiology of Aging, 2020, 95: 143 – 153. doi: 10.1016/j.neurobiolaging.2020.07.018
    [58] Mattsson N, Cullen NC, Andreasson U, et al. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease[J]. JAMA Neurology, 2019, 76(7): 791 – 799. doi: 10.1001/jamaneurol.2019.0765
    [59] van der Ende EL, Meeter LH, Poos JM, et al. Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study[J]. The Lancet Neurology, 2019, 18(12): 1103 – 1111. doi: 10.1016/S1474-4422(19)30354-0
    [60] Benussi A, Karikari TK, Ashton N, et al. Diagnostic and prognostic value of serum NfL and p-Tau181 in frontotemporal lobar degenera-tion[J]. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91(9): 960 – 967. doi: 10.1136/jnnp-2020-323487
    [61] Palmqvist S, Tideman P, Cullen N, et al. Prediction of future Alzheimer′s disease dementia using plasma phospho-tau combined with other accessible measures[J]. Nature Medicine, 2021, 27(6): 1034 – 1042. doi: 10.1038/s41591-021-01348-z
    [62] Pichet Binette A, Palmqvist S, Bali D, et al. Combining plasma phospho-tau and accessible measures to evaluate progression to Alzheimer′s dementia in mild cognitive impairment patients[J]. Alzheimer′s Research and Therapy, 2022, 14(1): 46. doi: 10.1186/s13195-022-00990-0
    [63] Cullen NC, Leuzy A, Janelidze S, et al. Plasma biomarkers of Alzheimer′s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations[J]. Nature Communications, 2021, 12(1): 3555. doi: 10.1038/s41467-021-23746-0
    [64] Palmqvist S, Janelidze S, Stomrud E, et al. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status[J]. JAMA Neurology, 2019, 76(9): 1060 – 1069. doi: 10.1001/jamaneurol.2019.1632
    [65] Janelidze S, Palmqvist S, Leuzy A, et al. Detecting amyloid positivity in early Alzheimer′s disease using combinations of plasma Aβ42/Aβ40 and p-tau[J]. Alzheimer′s and Dementia, 2022, 18(2): 283 – 293. doi: 10.1002/alz.12395
  • 加载中
计量
  • 文章访问数:  565
  • HTML全文浏览量:  143
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 接收日期:  2022-08-29
  • 网络出版日期:  2023-02-24
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回