高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自扩增RNA疫苗研究进展

王烁 李建民

王烁, 李建民. 自扩增RNA疫苗研究进展[J]. 中国公共卫生, 2023, 39(4): 514-520. doi: 10.11847/zgggws1140223
引用本文: 王烁, 李建民. 自扩增RNA疫苗研究进展[J]. 中国公共卫生, 2023, 39(4): 514-520. doi: 10.11847/zgggws1140223
WANG Shuo, LI Jianmin. Progress in researches on self-amplifying RNA vaccines[J]. Chinese Journal of Public Health, 2023, 39(4): 514-520. doi: 10.11847/zgggws1140223
Citation: WANG Shuo, LI Jianmin. Progress in researches on self-amplifying RNA vaccines[J]. Chinese Journal of Public Health, 2023, 39(4): 514-520. doi: 10.11847/zgggws1140223

自扩增RNA疫苗研究进展

doi: 10.11847/zgggws1140223
详细信息
    作者简介:

    王烁(1993 – ),男,山东青岛人,助理研究员,博士,研究方向:mRNA疫苗技术开发

    通信作者:

    李建民,E-mail:lijmqz@126.com

  • 中图分类号: R 392

Progress in researches on self-amplifying RNA vaccines

  • 摘要: 自扩增RNA(self-amplifying RNA, saRNA)疫苗为新一代mRNA疫苗,除含有编码抗原蛋白的mRNA序列外,还具有独特的自扩增元件,因此可在体内进行抗原序列的自我扩增。近年来,mRNA疫苗技术正快速发展并日趋成熟,在传染病和肿瘤等疾病中的应用不断增多,同时基于mRNA疫苗技术衍生出的saRNA疫苗在传染病和肿瘤的预防和治疗中的研究越来越备受关注,现有的研究结果也显示其巨大的发展空间,或对mRNA疫苗的研发应用产生实质性的影响。本文就saRNA疫苗的结构特点、生物学机制、递送原理和材料及在传染病、肿瘤和临床等领域的研究进展作一概述。
  • [1] Orenstein WA, Ahmed R. Simply put: vaccination saves lives[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(16): 4031 – 4033. doi: 10.1073/pnas.1704507114
    [2] Hobernik D, Bros M. DNA vaccines-how far from clinical use?[J]. International Journal of Molecular Sciences, 2018, 19(11): 3605. doi: 10.3390/ijms19113605
    [3] Myhr AI. DNA vaccines: regulatory considerations and safety aspects[J]. Current Issues in Molecular Biology, 2017, 22: 79 – 88.
    [4] Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases[J]. Gene Therapy, 2021, 28(3/4): 117 – 129.
    [5] Lundstrom K. Self - amplifying RNA viruses as RNA vaccines[J]. International Journal of Molecular Sciences, 2020, 21(14): 5130. doi: 10.3390/ijms21145130
    [6] Luxi N, Giovanazzi A, Capuano A, et al. COVID-19 vaccination in pregnancy, paediatrics, immunocompromised patients, and persons with history of allergy or prior SARS-CoV-2 infection: overview of current recommendations and pre- and post-marketing evidence for vaccine efficacy and safety[J]. Drug Safety, 2021, 44(12): 1247 – 1269. doi: 10.1007/s40264-021-01131-6
    [7] 杨娟, 张杭杰, 廖雨婷, 等. 新冠病毒疫苗临床研究与真实世界研究使用进展[J]. 中国公共卫生, 2021, 37(9): 1433 – 1437. doi: 10.11847/zgggws1135895
    [8] Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation[J]. Nature Reviews Drug Discovery, 2021, 20(11): 817 – 838. doi: 10.1038/s41573-021-00283-5
    [9] Shatkin AJ. mRNA caps-old and newer hats[J]. Bioessays, 1987, 7(6): 275 – 277. doi: 10.1002/bies.950070611
    [10] Jia LF, Mao YH, Ji QQ, et al. Decoding mRNA translatability and stability from the 5′ UTR[J]. Nature Structural and Molecular Biology, 2020, 27(9): 814 – 821. doi: 10.1038/s41594-020-0465-x
    [11] Mayya VK, Duchaine TF. Ciphers and executioners: how 3′-untranslated regions determine the fate of messenger RNAs[J]. Frontiers in Genetics, 2019, 10: 6. doi: 10.3389/fgene.2019.00006
    [12] Passmore LA, Coller J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression[J]. Nature Reviews Molecular Cell Biology, 2022, 23(2): 93 – 106. doi: 10.1038/s41580-021-00417-y
    [13] Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines – a new era in vaccinology[J]. Nature Reviews Drug Discovery, 2018, 17(4): 261 – 279. doi: 10.1038/nrd.2017.243
    [14] Ballesteros-Briones MC, Silva-Pilipich N, Herrador-Cañete G, et al. A new generation of vaccines based on alphavirus self-amplifying RNA[J]. Current Opinion in Virology, 2020, 44: 145 – 153.
    [15] Carey BD, Bakovic A, Callahan V, et al. New World alphavirus protein interactomes from a therapeutic perspective[J]. Antiviral Research, 2019, 163: 125 – 139. doi: 10.1016/j.antiviral.2019.01.015
    [16] Lundstrom K. Self-replicating RNA viruses for RNA therapeutics[J]. Molecules, 2018, 23(12): 3310. doi: 10.3390/molecules23123310
    [17] Vogel AB, Lambert L, Kinnear E, et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses[J]. Molecular Therapy, 2018, 26(2): 446 – 455. doi: 10.1016/j.ymthe.2017.11.017
    [18] Shi YY, Lu YC, You J. Antigen transfer and its effect on vaccine-induced immune amplification and tolerance[J]. Theranostics, 2022, 12(13): 5888 – 5913. doi: 10.7150/thno.75904
    [19] De Beuckelaer A, Grooten J, De Koker S. Type I interferons modulate CD8+ T cell immunity to mRNA vaccines[J]. Trends in Molecular Medicine, 2017, 23(3): 216 – 226. doi: 10.1016/j.molmed.2017.01.006
    [20] Tam HH, Melo MB, Kang M, et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): E6639 – E6648.
    [21] Leung CSK. Endogenous antigen presentation of MHC class ii epitopes through non - autophagic pathways[J]. Frontiers in Immun-ology, 2015, 6: 464.
    [22] Richner JM, Himansu S, Dowd KA, et al. Modified mRNA vaccines protect against Zika virus infection[J]. Cell, 2017, 168(6): 1114 – 1125.e10. doi: 10.1016/j.cell.2017.02.017
    [23] Pardi N, Hogan MJ, Naradikian MS, et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses[J]. Journal of Experimental Medicine, 2018, 215(6): 1571 – 1588. doi: 10.1084/jem.20171450
    [24] Irvine DJ, Aung A, Silva M. Controlling timing and location in vaccines[J]. Advanced Drug Delivery Reviews, 2020, 158: 91 – 115. doi: 10.1016/j.addr.2020.06.019
    [25] Ionescu L, Urschel S. Memory B cells and long-lived plasma cells[J]. Transplantation, 2019, 103(5): 890 – 898. doi: 10.1097/TP.0000000000002594
    [26] Lindsay KE, Bhosle SM, Zurla C, et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging[J]. Nature Biomedical Engineering, 2019, 3(5): 371 – 380. doi: 10.1038/s41551-019-0378-3
    [27] Schweinoch D, Bachmann P, Clausznitzer D, et al. Mechanistic modeling explains the dsRNA length-dependent activation of the RIG-I mediated immune response[J]. Journal of Theoretical Biology, 2020, 500: 110336. doi: 10.1016/j.jtbi.2020.110336
    [28] Ruan J, Cao YG, Ling T, et al. DDX23, an evolutionary conserved dsRNA sensor, participates in innate antiviral responses by pairing with TRIF or MAVS[J]. Frontiers in Immunology, 2019, 10: 2202. doi: 10.3389/fimmu.2019.02202
    [29] Rabah N, Granda OO, Quérat G, et al. Mutations on VEEV nsP1 relate RNA capping efficiency to ribavirin susceptibility[J]. Antiviral Research, 2020, 182: 104883. doi: 10.1016/j.antiviral.2020.104883
    [30] Ramakrishnan C, Kutumbarao NHV, Suhitha S, et al. Structure-function relationship of chikungunya nsP2 protease: a comparative study with papain[J]. Chemical Biology and Drug Design, 2017, 89(5): 772 – 782. doi: 10.1111/cbdd.12901
    [31] Abraham R, McPherson RL, Dasovich M, et al. Both ADP-ribosyl-binding and hydrolase activities of the alphavirus nsP3 macro-domain affect neurovirulence in mice[J]. mBio, 2020, 11(1): e03253 – 19.
    [32] Pietilä MK, Hellström K, Ahola T. Alphavirus polymerase and RNA replication[J]. Virus Research, 2017, 234: 44 – 57. doi: 10.1016/j.virusres.2017.01.007
    [33] Zhang L, Wang W, Wang SX. Effect of vaccine administration modality on immunogenicity and efficacy[J]. Expert Review of Vaccines, 2015, 14(11): 1509 – 1523. doi: 10.1586/14760584.2015.1081067
    [34] Ols S, Yang LF, Thompson EA, et al. Route of vaccine administration alters antigen trafficking but not innate or adaptive immunity[J]. Cell Reports, 2020, 30(12): 3964 – 3971.e7. doi: 10.1016/j.celrep.2020.02.111
    [35] Li M, Li Y, Peng K, et al. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses[J]. Acta Biomaterialia, 2017, 64: 237 – 248. doi: 10.1016/j.actbio.2017.10.019
    [36] Stewart MP, Lorenz A, Dahlman J, et al. Challenges in carrier-mediated intracellular delivery: moving beyond endosomal barriers[J]. WIREs Nanomedicine and Nanobiotechnology, 2016, 8(3): 465 – 478. doi: 10.1002/wnan.1377
    [37] Sahay G, Querbes W, Alabi C, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling[J]. Nature Biotechnology, 2013, 31(7): 653 – 658. doi: 10.1038/nbt.2614
    [38] Patel S, Kim J, Herrera M, et al. Brief update on endocytosis of nanomedicines[J]. Advanced Drug Delivery Reviews, 2019, 144: 90 – 111. doi: 10.1016/j.addr.2019.08.004
    [39] Cullis PR, Hope MJ. Lipid nanoparticle systems for enabling gene therapies[J]. Molecular Therapy, 2017, 25(7): 1467 – 1475. doi: 10.1016/j.ymthe.2017.03.013
    [40] Eygeris Y, Patel S, Jozic A, et al. Deconvoluting lipid nanoparticle structure for messenger RNA delivery[J]. Nano Letters, 2020, 20(6): 4543 – 4549. doi: 10.1021/acs.nanolett.0c01386
    [41] Brito LA, Chan M, Shaw CA, et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines[J]. Molecular Therapy, 2014, 22(12): 2118 – 2129. doi: 10.1038/mt.2014.133
    [42] Giraldo AM, Kasson PM. Bilayer-coated nanoparticles reveal how influenza viral entry depends on membrane deformability but not curvature[J]. The Journal of Physical Chemistry Letters, 2020, 11(17): 7190 – 7196. doi: 10.1021/acs.jpclett.0c01778
    [43] Patel S, Ashwanikumar N, Robinson E, et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA[J]. Nature Communications, 2020, 11(1): 983. doi: 10.1038/s41467-020-14527-2
    [44] Kim J, Jozic A, Sahay G. Naturally derived membrane lipids impact nanoparticle-based messenger RNA delivery[J]. Cellular and Molecular Bioengineering, 2020, 13(5): 463 – 474. doi: 10.1007/s12195-020-00619-y
    [45] Heyes J, Hall K, Tailor V, et al. Synthesis and characterization of novel poly(ethylene glycol)-lipid conjugates suitable for use in drug delivery[J]. Journal of Controlled Release, 2006, 112(2): 280 – 290. doi: 10.1016/j.jconrel.2006.02.012
    [46] Mui BL, Tam YK, Jayaraman M, et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmaco-dynamics of siRNA lipid nanoparticles[J]. Molecular Therapy Nucleic Acids, 2013, 2: e139. doi: 10.1038/mtna.2013.66
    [47] Suzuki T, Suzuki Y, Hihara T, et al. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production[J]. Inter-national Journal of Pharmaceutics, 2020, 588: 119792. doi: 10.1016/j.ijpharm.2020.119792
    [48] Zeng CX, Zhang CX, Walker PG, et al. Formulation and delivery technologies for mRNA vaccines[J]. Current Topics in Microbi-ology and Immunology, 2020,doi: 10.1007/82_2020_217.
    [49] Wahane A, Waghmode A, Kapphahn A, et al. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy[J]. Molecules, 2020, 25(12): 2866. doi: 10.3390/molecules25122866
    [50] Coolen AL, Lacroix C, Mercier-Gouy P, et al. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation[J]. Biomaterials, 2019, 195: 23 – 37. doi: 10.1016/j.biomaterials.2018.12.019
    [51] Suberi A, Grun MK, Mao TY, et al. Inhalable polymer nano-particles for versatile mRNA delivery and mucosal vaccination[J]. bioRxiv, 2022,doi: 10.1101/2022.03.22.485401.
    [52] Wang YY, Ye MZ, Xie RS, et al. Enhancing the in vitro and in vivo stabilities of polymeric nucleic acid delivery nanosystems[J]. Bioconjugate Chemistry, 2019, 30(2): 325 – 337. doi: 10.1021/acs.bioconjchem.8b00749
    [53] Magini D, Giovani C, Mangiavacchi S, et al. Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge[J]. PLoS One, 2016, 11(8): e0161193. doi: 10.1371/journal.pone.0161193
    [54] Erasmus JH, Khandhar AP, Guderian J, et al. A nanostructured lipid carrier for delivery of a replicating viral RNA provides single, low-dose protection against Zika[J]. Molecular Therapy, 2018, 26(10): 2507 – 2522. doi: 10.1016/j.ymthe.2018.07.010
    [55] Melo M, Porter E, Zhang Y, et al. Immunogenicity of RNA replicons encoding HIV Env immunogens designed for self-assembly into nanoparticles[J]. Molecular Therapy, 2019, 27(12): 2080 – 2090. doi: 10.1016/j.ymthe.2019.08.007
    [56] Zhong ZF, Catani JPP, Cafferty SM, et al. Immunogenicity and protection efficacy of a naked self-replicating mRNA-based Zika virus vaccine[J]. Vaccines, 2019, 7(3): 96. doi: 10.3390/vaccines7030096
    [57] Stokes A, Pion J, Binazon O, et al. Nonclinical safety assessment of repeated administration and biodistribution of a novel rabies self-amplifying mRNA vaccine in rats[J]. Regulatory Toxicology and Pharmacology, 2020, 113: 104648. doi: 10.1016/j.yrtph.2020.104648
    [58] Bogers WM, Oostermeijer H, Mooij P, et al. Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion[J]. The Journal of Infectious Diseases, 2015, 211(6): 947 – 955. doi: 10.1093/infdis/jiu522
    [59] Perche F, Clemençon R, Schulze K, et al. Neutral lipopolyplexes for in vivo delivery of conventional and replicative RNA vaccine[J]. Molecular Therapy Nucleic Acids, 2019, 17: 767 – 775. doi: 10.1016/j.omtn.2019.07.014
    [60] Blakney AK, Zhu YQ, McKay PF, et al. Big is beautiful: enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer[J]. ACS Nano, 2020, 14(5): 5711 – 5727. doi: 10.1021/acsnano.0c00326
    [61] Démoulins T, Ebensen T, Schulze K, et al. Self-replicating RNA vaccine functionality modulated by fine-tuning of polyplex delivery vehicle structure[J]. Journal of Controlled Release, 2017, 266: 256 – 271. doi: 10.1016/j.jconrel.2017.09.018
    [62] Englezou PC, Sapet C, Démoulins T, et al. Self-amplifying replicon RNA delivery to dendritic cells by cationic lipids[J]. Molecular Therapy Nucleic Acids, 2018, 12: 118 – 134. doi: 10.1016/j.omtn.2018.04.019
    [63] Anderluzzi G, Lou G, Gallorini S, et al. Investigating the impact of delivery system design on the efficacy of self - amplifying RNA vaccines[J]. Vaccines, 2020, 8(2): 212. doi: 10.3390/vaccines8020212
    [64] Maruggi G, Chiarot E, Giovani C, et al. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens[J]. Vaccine, 2017, 35(2): 361 – 368. doi: 10.1016/j.vaccine.2016.11.040
    [65] Fleeton MN, Chen M, Berglund P, et al. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus[J]. The Journal of Infectious Diseases, 2001, 183(9): 1395 – 1398. doi: 10.1086/319857
    [66] Moyo N, Vogel AB, Buus S, et al. Efficient induction of T cells against conserved HIV-1 regions by mosaic vaccines delivered as self-amplifying mRNA[J]. Molecular Therapy-Methods and Clinical Development, 2019, 12: 32 – 46. doi: 10.1016/j.omtm.2018.10.010
    [67] Ajbani SP, Velhal SM, Kadam RB, et al. Immunogenicity of virus-like Semliki Forest virus replicon particles expressing Indian HIV-1C gag, env and polRT genes[J]. Immunology Letters, 2017, 190: 221 – 232. doi: 10.1016/j.imlet.2017.08.019
    [68] Määttä AM, Mäkinen K, Ketola A, et al. Replication competent Semliki Forest virus prolongs survival in experimental lung cancer[J]. International Journal of Cancer, 2008, 123(7): 1704 – 1711. doi: 10.1002/ijc.23646
    [69] Velders MP, McElhiney S, Cassetti MC, et al. Eradication of established tumors by vaccination with Venezuelan equine ence-phalitis virus replicon particles delivering human papillomavirus 16 E7 RNA[J]. Cancer Research, 2001, 61(21): 7861 – 7867.
    [70] Draghiciu O, Boerma A, Hoogeboom BN, et al. A rationally designed combined treatment with an alphavirus-based cancer vaccine, sunitinib and low-dose tumor irradiation completely blocks tumor development[J]. OncoImmunology, 2015, 4(10): e1029699. doi: 10.1080/2162402X.2015.1029699
    [71] Shapiro GK. HPV vaccination: an underused strategy for the prevention of cancer[J]. Current Oncology, 2022, 29(5): 3780 – 3792. doi: 10.3390/curroncol29050303
    [72] Moran TP, Burgents JE, Long B, et al. Alphaviral vector-transduced dendritic cells are successful therapeutic vaccines against neu-overexpressing tumors in wild-type mice[J]. Vaccine, 2007, 25(36): 6604 – 6612. doi: 10.1016/j.vaccine.2007.06.058
    [73] Lyons JA, Sheahan BJ, Galbraith SE, et al. Inhibition of angio-genesis by a Semliki forest virus vector expressing VEGFR-2 reduces tumour growth and metastasis in mice[J]. Gene Therapy, 2007, 14(6): 503 – 513. doi: 10.1038/sj.gt.3302889
    [74] Avogadri F, Zappasodi R, Yang A, et al. Combination of alpha-virus replicon particle-based vaccination with immunomodulatory antibodies: therapeutic activity in the B16 melanoma mouse model and immune correlates[J]. Cancer Immunology Research, 2014, 2(5): 448 – 458. doi: 10.1158/2326-6066.CIR-13-0220
    [75] Durso RJ, Andjelic S, Gardner JP, et al. A novel alphavirus vaccine encoding prostate-specific membrane antigen elicits potent cellular and humoral immune responses[J]. Clinical Cancer Research, 2007, 13(13): 3999 – 4008. doi: 10.1158/1078-0432.CCR-06-2202
    [76] de la Luz Garcia-Hernandez M, Gray A, Hubby B, et al. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity[J]. Cancer Research, 2008, 68(3): 861 – 869. doi: 10.1158/0008-5472.CAN-07-0445
    [77] Martikainen M, Niittykoski M, von und zu Fraunbrg M, et al. MicroRNA-attenuated clone of virulent semliki forest virus overcomes antiviral type I interferon in resistant mouse CT-2A glioma[J]. Journal of Virology, 2015, 89(20): 10637 – 10647. doi: 10.1128/JVI.01868-15
    [78] Msaouel P, Iankov ID, Allen C, et al. Engineered measles virus as a novel oncolytic therapy against prostate cancer[J]. The Prostate, 2009, 69(1): 82 – 91. doi: 10.1002/pros.20857
    [79] Awano M, Fujiyuki T, Shoji K, et al. Measles virus selectively blind to signaling lymphocyte activity molecule has oncolytic efficacy against nectin-4-expressing pancreatic cancer cells[J]. Cancer Science, 2016, 107(11): 1647 – 1652. doi: 10.1111/cas.13064
    [80] Regules JA, Beigel JH, Paolino KM, et al. A recombinant vesicular stomatitis virus Ebola vaccine[J]. New England Journal of Medicine, 2017, 376(4): 330 – 341. doi: 10.1056/NEJMoa1414216
    [81] ElSherif MS, Brown C, MacKinnon-Cameron D, et al. Assessing the safety and immunogenicity of recombinant vesicular stomatitis virus Ebola vaccine in healthy adults: a randomized clinical trial[J]. CMAJ, 2017, 189(24): E819 – E827. doi: 10.1503/cmaj.170074
    [82] Dahlke C, Kasonta R, Lunemann S, et al. Dose-dependent t-cell dynamics and cytokine cascade following rVSV-ZEBOV immuni-zation[J]. eBioMedicine, 2017, 19: 107 – 118. doi: 10.1016/j.ebiom.2017.03.045
    [83] Henao-Restrepo AM, Camacho A, Longini IM, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!)[J]. The Lancet, 2017, 389(10068): 505 – 518. doi: 10.1016/S0140-6736(16)32621-6
    [84] Halperin SA, Arribas JR, Rupp R, et al. Six - month safety data of recombinant vesicular stomatitis virus – Zaire Ebola virus envelope glycoprotein vaccine in a phase 3 double-blind, placebo-controlled randomized study in healthy adults[J]. The Journal of Infectious Diseases, 2017, 215(12): 1789 – 1798. doi: 10.1093/infdis/jix189
    [85] Bernstein DI, Reap EA, Katen K, et al. Randomized, double-blind, phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers[J]. Vaccine, 2009, 28(2): 484 – 493. doi: 10.1016/j.vaccine.2009.09.135
    [86] Wecker M, Gilbert P, Russell N, et al. Phase I safety and immuno-genicity evaluations of an alphavirus replicon HIV-1 subtype C gag vaccine in healthy HIV-1-uninfected adults[J]. Clinical and Vaccine Immunology, 2012, 19(10): 1651 – 1660. doi: 10.1128/CVI.00258-12
    [87] Chen GL, Coates EE, Plummer SH, et al. Effect of a chikungunya virus-like particle vaccine on safety and tolerability outcomes: a randomized clinical trial[J]. JAMA, 2020, 323(14): 1369 – 1377. doi: 10.1001/jama.2020.2477
    [88] Morse MA, Hobeika AC, Osada T, et al. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of tregs to induce immune responses in humans with advanced cancer[J]. The Journal of Clinical Investigation, 2010, 120(9): 3234 – 3241. doi: 10.1172/JCI42672
    [89] Slovin SF, Kehoe M, Durso R, et al. A phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific membrane antigen (PSMA) in subjects with prostate cancer[J]. Vaccine, 2013, 31(6): 943 – 949. doi: 10.1016/j.vaccine.2012.11.096
    [90] Fortner A, Schumacher D. First COVID-19 vaccines receiving the US FDA and EMA emergency use authorization[J]. Discoveries, 2021, 9(1): e122. doi: 10.15190/d.2021.1
    [91] 杨朝国, 刘继芬, 蒋宏. COVID-19疫苗免疫应答及保护效力研究进展[J]. 中国公共卫生, 2021, 37(5): 896 – 901. doi: 10.11847/zgggws1134410
    [92] Pollock KM, Cheeseman HM, Szubert AJ, et al. Safety and immuno-genicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial[J]. eClinical Medicine, 2022, 44: 101262. doi: 10.1016/j.eclinm.2021.101262
    [93] Business Wire. Arcturus announces self-amplifying COVID-19 mRNA vaccine candidate arct-154 meets primary efficacy endpoint in phase 3 study[N]. Business Wire, 2022 – 04 – 20.
    [94] Feedstuffs. Ffar awards grant to genvax technologies to develop ASF vaccine[EB/OL]. (2022 – 04 – 18)[2022 – 05 – 20]. https://www.feedstuffs.com/news/ffar-awards-grant-genvax-technologies-develop-asf-vaccine.
    [95] Bovine Veterinarian. Genvax technologies secures $6.5 million to advance novel vaccine platform[N]. Bovine Veterinarian, 2022 – 08 – 09.
    [96] Voigt EA, Gerhardt A, Hanson D, et al. A self-amplifying RNA vaccine against COVID-19 with long-term room-temperature stability[J]. npj Vaccines, 2022, 7(1): 136. doi: 10.1038/s41541-022-00549-y
  • 加载中
计量
  • 文章访问数:  527
  • HTML全文浏览量:  408
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 接收日期:  2022-09-05
  • 网络出版日期:  2023-03-31
  • 刊出日期:  2023-04-10

目录

    /

    返回文章
    返回