高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

农作物中微囊藻毒素的富集、危害及食用风险研究进展

罗青 袁冠湘 刘桂华

罗青, 袁冠湘, 刘桂华. 农作物中微囊藻毒素的富集、危害及食用风险研究进展[J]. 中国公共卫生, 2023, 39(8): 1078-1082. doi: 10.11847/zgggws1140342
引用本文: 罗青, 袁冠湘, 刘桂华. 农作物中微囊藻毒素的富集、危害及食用风险研究进展[J]. 中国公共卫生, 2023, 39(8): 1078-1082. doi: 10.11847/zgggws1140342
LUO Qing, YUAN Guanxiang, LIU Guihua. Bioconcentration, phytotoxicity and health risk of microcystins in crops: research progress[J]. Chinese Journal of Public Health, 2023, 39(8): 1078-1082. doi: 10.11847/zgggws1140342
Citation: LUO Qing, YUAN Guanxiang, LIU Guihua. Bioconcentration, phytotoxicity and health risk of microcystins in crops: research progress[J]. Chinese Journal of Public Health, 2023, 39(8): 1078-1082. doi: 10.11847/zgggws1140342

农作物中微囊藻毒素的富集、危害及食用风险研究进展

doi: 10.11847/zgggws1140342
基金项目: 国际原子能机构合作研究基金项目(IAEA CPR_D52044_24959);深圳市三名工程项目(SZSM201811070);深圳市医学重点学科建设经费(SZXK066)
详细信息
    作者简介:

    罗青(1999 – ),硕士在读,研究方向:公共卫生

    通信作者:

    刘桂华,E-mail:gliu_686@hotmail.com

  • 中图分类号: R 155.3

Bioconcentration, phytotoxicity and health risk of microcystins in crops: research progress

More Information
  • 摘要: 微囊藻毒素(microcystins, MCs)是最受关注的一种蓝藻毒素,其可对肝脏产生伤害,具有急性肝毒性作用,长期摄入可引发肝癌。除水体和水产品外,MCs还可通过其污染的灌溉水富集在农作物中,增加人群的食用风险。本文系统概述了微囊藻毒素在不同农作物中的富集情况及其对农作物的毒性作用,同时评价了农作物可食用部分残留的MCs对人类健康的潜在危害。
  • [1] Buratti FM, Manganelli M, Vichi S, et al. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation[J]. Archives of Toxicology, 2017, 91(3): 1049 – 1130. doi: 10.1007/s00204-016-1913-6
    [2] 熊筱璐, 韩晓冬, 曾莉. 微囊藻毒素毒性机制研究进展[J]. 中国公共卫生, 2015, 31(2): 238 – 241. doi: 10.11847/zgggws2015-31-02-32
    [3] 袁瑞, 付云, 张鹏, 等. 南太湖水体及水产品中微囊藻毒素污染状况调查[J]. 中国卫生检验杂志, 2021, 31(10): 1243 – 1245, 1249.
    [4] Tamele IJ, Vasconcelos V. Microcystin incidence in the drinking water of Mozambique: challenges for public health protection[J]. Toxins (Basel), 2020, 12(6): 368. doi: 10.3390/toxins12060368
    [5] Roy-Lachapelle A, Solliec M, Bouchard MF, et al. Detection of cyanotoxins in algae dietary supplements[J]. Toxins, 2017, 9(3): 76. doi: 10.3390/toxins9030076
    [6] Drobac D, Tokodi N, Simeunović J, et al. Human exposure to cyanotoxins and their effects on health[J]. Archives of Industrial Hygiene and Toxicology, 2013, 64(2): 305 – 316. doi: 10.2478/10004-1254-64-2013-2320
    [7] Romero-Oliva CS, Contardo-Jara V, Block T, et al. Accumulation of microcystin congeners in different aquatic plants and crops – a case study from lake Amatitlán, Guatemala[J]. Ecotoxicology and Environmental Safety, 2014, 102: 121 – 128. doi: 10.1016/j.ecoenv.2014.01.031
    [8] Hereman TC, do Carmo Bittencourt-Oliveira M. Bioaccumulation of microcystins in lettuce[J]. Journal of Phycology, 2012, 48(6): 1535 – 1537. doi: 10.1111/jpy.12006
    [9] Mohamed ZA, Al Shehri AM. Microcystins in groundwater wells and their accumulation in vegetable plants irrigated with conta-minated waters in Saudi Arabia[J]. Journal of Hazardous Materials, 2009, 172(1): 310 – 315. doi: 10.1016/j.jhazmat.2009.07.010
    [10] Zhang YY, Whalen JK, Sauvé S. Phytotoxicity and bioconcen-tration of microcystins in agricultural plants: meta-analysis and risk assessment[J]. Environmental Pollution, 2021, 272: 115966. doi: 10.1016/j.envpol.2020.115966
    [11] Campos A, Redouane EM, Freitas M, et al. Impacts of microcystins on morphological and physiological parameters of agricultural plants: a review[J]. Plants, 2021, 10(4): 639. doi: 10.3390/plants10040639
    [12] Liu BL, Li YW, Xie LS, et al. Sorption of microcystin-RR onto surface soils: characteristics and influencing factors[J]. Journal of Hazardous Materials, 2022, 431: 128571. doi: 10.1016/j.jhazmat.2022.128571
    [13] 柴玉婕, 冯佳, 周见庭, 等. 微囊藻毒素生物治理技术研究进展[J]. 中国生物工程杂志, 2022, 42(8): 109 – 127. doi: 10.13523/j.cb.2203052
    [14] Zhu XY, Shen YT, Chen XG, et al. Biodegradation mechanism of microcystin-LR by a novel isolate of Rhizobium sp. TH and the evolutionary origin of the mlrA gene[J]. International Biodeteriora-tion and Biodegradation, 2016, 115: 17 – 25. doi: 10.1016/j.ibiod.2016.07.011
    [15] Xiang L, Li YW, Wang ZR, et al. Bioaccumulation and phyto-toxicity and human health risk from microcystin-LR under various treatments: a pot study[J]. Toxins, 2020, 12(8): 523. doi: 10.3390/toxins12080523
    [16] Redouane EM, El Amrani Zerrifi S, El Khalloufi F, et al. Mode of action and fate of microcystins in the complex soil-plant eco-systems[J]. Chemosphere, 2019, 225: 270 – 281. doi: 10.1016/j.chemosphere.2019.03.008
    [17] Cao Q, Steinman AD, Wan X, et al. Bioaccumulation of microcystin congeners in soil-plant system and human health risk assessment: a field study from Lake Taihu region of China[J]. Environmental Pollution, 2018, 240: 44 – 50. doi: 10.1016/j.envpol.2018.04.067
    [18] Xiang L, Li YW, Liu BL, et al. High ecological and human health risks from microcystins in vegetable fields in southern China[J]. Environment International, 2019, 133: 105142. doi: 10.1016/j.envint.2019.105142
    [19] Corbel S, Mougin C, Nélieu S, et al. Evaluation of the transfer and the accumulation of microcystins in tomato (Solanum lycopersicum cultivar MicroTom) tissues using a cyanobacterial extract contain-ing microcystins and the radiolabeled microcystin-LR (14C-MC-LR)[J]. Science of the Total Environment, 2016, 541: 1052 – 1058. doi: 10.1016/j.scitotenv.2015.10.004
    [20] Cordeiro-Araújo MK, Chia MA, de Toledo Arruda-Neto JD, et al. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: human health risk assessment[J]. Science of the Total Environment, 2016, 566 – 567: 1379 – 1386.
    [21] Gutiérrez-Praena D, Campos A, Azevedo J, et al. Exposure of Lycopersicon esculentum to microcystin-LR: effects in the leaf proteome and toxin translocation from water to leaves and fruits[J]. Toxins (Basel), 2014, 6(6): 1837 – 1854. doi: 10.3390/toxins6061837
    [22] Sedan D, Malaissi L, Vaccarini CA, et al. [D-Leu1]MC-LR has lower PP1 inhibitory capability and greater toxic potency than MC-LR in animal and plant tissues[J]. Toxins (Basel), 2020, 12(10): 632. doi: 10.3390/toxins12100632
    [23] García-Espín L, Cantoral EA, Asencio AD, et al. Microcystins and cyanophyte extracts inhibit or promote the photosynthesis of fluvial algae. Ecological and management implications[J]. Ecotoxicology, 2017, 26(5): 658 – 666. doi: 10.1007/s10646-017-1798-z
    [24] Cao Q, Rediske RR, Yao L, et al. Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa)[J]. Ecotoxicology and Environmental Safety, 2018, 149: 143 – 149. doi: 10.1016/j.ecoenv.2017.11.020
    [25] Liang CJ, Liu HY. Response of hormone in rice seedlings to irrigation contaminated with cyanobacterial extract containing microcystins[J]. Chemosphere, 2020, 256: 127157. doi: 10.1016/j.chemosphere.2020.127157
    [26] Liang CJ, Ma XD, Liu HY. Effect of microcystins at different rice growth stages on its yield, quality, and safety[J]. Environmental Science and Pollution Research, 2021, 28(11): 13942 – 13954. doi: 10.1007/s11356-020-11642-x
    [27] Zhu JZ, Ren XQ, Liu HY, et al. Effect of irrigation with microcystins-contaminated water on growth and fruit quality of Cucumis sativus L. and the health risk[J]. Agricultural Water Management, 2018, 204: 91 – 99. doi: 10.1016/j.agwat.2018.04.011
    [28] Gu YF, Liang CJ. Responses of antioxidative enzymes and gene expression in Oryza sativa L and Cucumis sativus L seedlings to microcystins stress[J]. Ecotoxicology and Environmental Safety, 2020, 193: 110351. doi: 10.1016/j.ecoenv.2020.110351
    [29] Haida M, El Khalloufi F, Mugani R, et al. Effects of irrigation with microcystin-containing water on growth, physiology, and antioxidant defense in strawberry fragaria vulgaris under hydroponic culture[J]. Toxins (Basel), 2022, 14(3): 198. doi: 10.3390/toxins14030198
    [30] Cao Q, Steinman AD, Yao L, et al. Increment of root membrane permeability caused by microcystins result in more elements uptake in rice (Oryza sativa)[J]. Ecotoxicology and Environmental Safety, 2017, 145: 431 – 435. doi: 10.1016/j.ecoenv.2017.07.066
    [31] Chen JZ, Dai J, Zhang HY, et al. Bioaccumulation of microcystin and its oxidative stress in the apple (Malus pumila)[J]. Ecotoxicology, 2010, 19(4): 796 – 803. doi: 10.1007/s10646-009-0456-5
    [32] Xue YF, Li YQ, Shi ZQ, et al. Investigations into the effects of microcystin-LR on the growth and antioxidant enzymes in Chinese cabbage and rape[C]//Proceedings of 2010 4th Inter-national Conference on Bioinformatics and Biomedical Engineer-ing. Chengdu, China: IEEE, 2010.
    [33] Svirčev Z, Lalić D, Savić GB, et al. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings[J]. Archives of Toxicology, 2019, 93(9): 2429 – 2481. doi: 10.1007/s00204-019-02524-4
    [34] McElhiney J, Lawton LA, Leifert C. Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure[J]. Toxicon, 2001, 39(9): 1411 – 1420. doi: 10.1016/S0041-0101(01)00100-3
    [35] Liang GD, Xie P, Chen J, et al. Comparative studies on the pH dependence of DOW of microcystin-RR and -LR using LC-MS[J]. The Scientific World Journal, 2011, 11: 930514.
    [36] Llana-Ruiz-Cabello M, Jos A, Cameán A, et al. Analysis of the use of cylindrospermopsin and/or microcystin-contaminated water in the growth, mineral content, and contamination of Spinacia oleracea and Lactuca sativa[J]. Toxins (Basel), 2019, 11(11): 624. doi: 10.3390/toxins11110624
    [37] Prieto A, Campos A, Cameán A, et al. Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa)[J]. Ecotoxicology and Environmental Safety, 2011, 74(7): 1973 – 1980. doi: 10.1016/j.ecoenv.2011.06.009
    [38] Chen W, Jia YL, Li EH, et al. Soil-based treatments of mechanically collected cyanobacterial blooms from lake Taihu: efficiencies and potential risks[J]. Environmental Science and Technology, 2012, 46(24): 13370 – 13376. doi: 10.1021/es3027902
    [39] Chen J, Han FX, Wang F, et al. Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa)[J]. Ecotoxicology and Environmental Safety, 2012, 76(2): 193 – 199.
    [40] Xiao FG, Zhao XL, Tang J, et al. Necessity of screening water chestnuts for microcystins after cyanobacterial blooms break out[J]. Archives of Environmental Contamination and Toxicology, 2009, 57(2): 256 – 263. doi: 10.1007/s00244-008-9275-6
    [41] Zhang DW, Xie P, Chen J. Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(2): 202 – 207. doi: 10.1007/s00128-009-9910-6
    [42] Chorus I, Bartram J. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management[M]. London: E and FN Spon, 1999: 400.
    [43] Petrou M, Karas PA, Vasileiadis S, et al. Irrigation of radish (Raphanus sativus L.) with microcystin-enriched water holds low risk for plants and their associated rhizopheric and epiphytic microbiome[J]. Environmental Pollution, 2020, 266(Pt 1): 115208.
  • 加载中
计量
  • 文章访问数:  102
  • HTML全文浏览量:  49
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 接收日期:  2022-09-16
  • 录用日期:  2023-02-08
  • 修回日期:  2022-12-21
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2023-08-10

目录

    /

    返回文章
    返回