Comparison of three random spot urine-based calculations with 24-hour urine sodium measurement for mean salt intake estimation: a sampling study in adult residents of Anhui province
-
摘要:
目的 比较3种随机点尿计算方法与24 h尿钠法估算安徽省成年居民平均盐摄入量的差异和一致性,为验证3种随机点尿方法估算人群盐摄入量方法的可靠性提供参考依据。 方法 收集2019年安徽省成年居民高血压和钠摄入量监测基线调查中随机尿样合格3329人、24 h尿样合格1500人以及24 h尿样和随机尿样配对1493人的相关数据,采用3种点尿转换24 h尿钠方法估计平均盐摄入量,并与24 h尿钠法估算的盐摄入量进行比较;应用配对样本t检验、组类内相关系数(ICC)分析和Bland-Altman图检验3种随机点尿计算方法与24 h尿钠法的差异和一致性。 结果 基于24 h尿钠法估算的安徽省成年居民平均盐摄入量为9.1(95%CI = 8.9~9.4)g/d,Kawasaki、Tanaka和 INTERSALT 3种随机点尿计算方法估算的安徽省成年居民平均盐摄入量分别为12.7(95%CI = 12.6~12.9)、9.5(95%CI = 9.4~9.6)和 8.6 (95%CI = 8.5~8.7)g/d。配对比较结果显示,Tanaka随机点尿计算方法估算的结果最接近24 h尿钠法,平均差值为0.2(95%CI = 0.0~0.4)g/d;Tanaka随机点尿计算方法估算的ICC值最高(0.34),INTERSALT随机点尿计算方法估算的ICC值次之(0.33),Kawasaki随机点尿计算方法估算的ICC值最低(0.23);3种点尿法的估计值与24 h尿钠法的估计值吻合较好,除Kawasaki外,INTERSALT和Tanaka随机点尿计算方法估算的结果在低水平盐摄入量时可能高估,在高水平摄入时可能低估。 结论 安徽省成年居民盐摄入量的3种点尿估计方法均与24 h尿钠法一致,Tanaka法相对更准确地估计人群盐摄入量。 Abstract:Objective To compare disparities between three random spot urine-based calculations and 24-hour urine sodium measurement in mean salt intake estimation among adult residents in Anhui province for evaluating the reliability of the three spot urine-based mean salt intake estimation methods. Methods Random spot and 24-hour urine samples were collected from permanent adult residents (18 – 69 years old) participating in a hypertension and sodium intake baseline survey during 2018 in Anhui province. The eligible samples included spot urine samples from 3 329 participants and 24-hour urine samples from 1 500 participants, of which 1 493 had both spot and 24-hour urine samples. Mean salt intake of the participants was estimated according to determination of spot urine samples using the three (INTERSALT/Kawasaki/Tanaka) equations and the calculated results were compared with the measurement from 24-hour urine samples. Differences between the mean salt intake estimations based on spot urine samples and 24-hour urine samples were examined with paired t-test, intraclass correlation coefficient (ICC) analysis, and Bland-Altman plot test. Results The mean salt intake based on 24-hour urine measurement was 9.1 g/day (95% confidence interval [CI]: 8.9 – 9.4); the spot urine-based mean salt intakes (in g/day) calculated using INTERSALT, Kawasaki, and Tanaka equation were 8.6 (95%CI: 8.5 – 8.7), 12.7 (95%CI: 12.6 – 12.9), and 9.5 (95%CI: 9.4 – 9.6), respectively. The paired comparison showed that the estimation derived from Tanaka equation was the closest to the 24-hour urine-based measurement, with a difference of 0.2 g/d (95% CI: 0.0 – 0.4). Among the three equations, the ICC was the highest (0.34) for Tanaka, followed by that of INTERSALT (0.33) and Kawasaki (0.23). The three spot urine-based estimations of mean salt intake were in good agreement with that of 24-hour urine-based measurement; while the estimations derived from INTERSALT and Tanaka equation could be higher under the condition of lower level salt intake but lower under the condition of higher level salt intake. Conclusion The three random spot urine-based estimations of salt intake were consistent with 24-hour urine sodium measurement for adult residents in Anhui province and the estimation derived from Tanaka equation was more accurate. -
图 1 3种随机点尿计算方法与24 h尿钠法估算平均盐摄入量比较Bland-Altman图
注:图中短虚线表示差异平均值,长虚线为1.96$\bar x \pm 2s $的95%CI一致性界限。
Figure 1. Bland-Altman plots – X axis: mean salt intake (g/d) estimated by both 24-hour urine sample and one random spot urine sample-based Kawasaki/Tanaka/INTERSAL calculation, Y axis: difference (g/d) between the estimation of one random spot urine sample-based Kawasaki/Tanaka/INTERSAL calculation and 24-hour urine sample for 1 493 adult community participants of a baseline survey on hypertension and salt intake in Anhui province, 2019
表 1 随机点尿样本合格和24 h尿样本合格人群人口学特征分布
Table 1. Number and ratio of examinees with qualified one random spot and 24-hour urine samples stratified by demographics, lifestyle factors, hypertension, and body mass index for 3 329 adult community participants of a baseline survey on hypertension and salt intake in Anhui province, 2019
特征 随机点尿样本合格(n = 3329) 24 h尿样本合格(n = 1500) 人数 构成比(%) 人数 构成比(%) 性别 男性 1592 47.82 712 47.47 女性 1737 52.18 788 52.53 年龄(岁) 18~29 593 17.81 240 16.00 30~44 1344 40.37 610 40.67 45~59 914 27.46 424 28.27 60~69 478 14.36 226 15.07 文化程度 ab 小学及以下 1006 30.22 448 29.87 中学 1572 47.22 726 48.40 大专及以上 750 22.53 325 21.67 婚姻状况 ab 未婚 326 9.79 120 8.00 已婚/同居 2873 86.30 1313 87.53 分居/离异/丧偶 127 3.81 65 4.33 居住地 b 城镇 1554 46.68 699 46.60 乡村 1775 53.32 800 53.33 吸烟情况 b 从不吸烟 2191 65.82 1005 67.00 现在吸烟 872 26.19 380 25.33 曾经吸烟 266 7.99 114 7.60 饮酒情况 b 不饮酒 1675 50.32 750 50.00 饮酒 1654 49.68 749 49.93 身体活动不足 b 否 1212 36.41 524 34.93 是 2117 63.59 975 65.00 高血压 b 否 2598 78.04 1160 77.33 是 731 21.96 338 22.53 BMI ab 低体重 132 3.97 52 3.46 正常体重 1536 46.14 709 47.27 超重 1190 35.75 542 36.13 肥胖 459 13.79 190 12.67 注:a 随机点尿样本合格人群数据有缺失;b 24 h尿样本合格人群数据有缺失。 表 2 3种随机点尿计算方法与24 h尿钠法估算安徽省不同特征成年居民平均盐摄入量(g/d)
Table 2. Demographic-, lifestyle factor-, hypertension-, and body mass index-specific average salt intake (g/d) estimated with 24-hour urine sample or one random spot urine sample-based Kawasaki/Tanaka/INTERSAL calculation for 3 329 adult community participants of a baseline survey on hypertension and salt intake in Anhui province, 2019
特征 24 h尿钠法 Kawasaki随机点尿计算方法 Tanaka随机点尿计算方法 INTERSALT随机点尿计算方法 摄入量 a 95% CI a 摄入量 a 95% CI a 摄入量 a 95% CI a 摄入量 a 95% CI a 性别 男性 9.8 9.4~10.2 13.8 13.5~14.1 9.8 9.6~9.9 9.8 9.7~10.0 女性 8.5 8.2~8.8 11.7 11.5~11.9 9.3 9.1~9.4 7.3 7.2~7.4 年龄(岁) 18~29 8.9 8.3~9.5 12.6 12.2~13.1 9.2 9.0~9.5 7.8 7.6~8.1 30~44 9.1 8.7~9.5 13.1 12.8~13.4 9.7 9.5~9.8 8.9 8.8~9.0 45~59 9.7 9.2~10.1 12.8 12.5~13.1 9.7 9.5~9.9 8.9 8.7~9.1 60~69 8.7 8.2~9.1 11.9 11.6~12.3 9.3 9.1~9.5 8.4 8.2~8.6 文化程度 小学及以下 9.4 9.0~9.8 12.7 12.4~13.0 9.7 9.5~9.9 8.6 8.5~8.8 中学 9.5 9.2~9.9 12.7 12.4~12.9 9.4 9.3~9.6 8.6 8.4~8.7 大专及以上 8.3 7.8~8.9 12.9 12.5~13.3 9.5 9.3~9.7 8.5 8.3~8.7 婚姻状况 未婚 8.9 7.9~9.9 12.6 12.0~13.2 9.1 8.8~9.5 7.7 7.3~8.0 已婚/同居 9.2 8.9~9.5 12.8 12.6~13.0 9.6 9.5~9.7 8.8 8.7~8.9 分居/离异/丧偶 8.8 7.7~9.8 11.7 11.1~12.3 9.1 8.7~9.5 8.0 7.7~8.3 居住地 城镇 8.4 8.1~8.8 12.2 12.0~12.5 9.2 9.1~9.4 8.2 8.0~8.4 乡村 10.0 9.7~10.3 13.3 13.1~13.5 9.9 9.7~10.0 9.0 8.9~9.1 吸烟情况 从不吸烟 8.8 8.5~9.1 12.3 12.1~12.5 9.4 9.3~9.5 8.0 7.9~8.1 现在吸烟 10.0 9.4~10.6 13.7 13.3~14.0 9.7 9.5~9.9 9.7 9.5~9.9 曾经吸烟 9.5 8.5~10.4 13.4 12.8~14.0 9.7 9.3~10.0 9.7 9.4~10.1 饮酒情况 不饮酒 8.7 8.3~9.0 12.2 11.9~12.4 9.3 9.2~9.5 8.0 7.8~8.1 饮酒 9.6 9.2~10.0 13.3 13.0~13.5 9.7 9.6~9.8 9.2 9.0~9.3 身体活动不足 否 9.6 9.2~10.1 13.2 12.9~13.5 9.7 9.5~9.9 9.0 8.9~9.2 是 8.9 8.6~9.2 12.5 12.2~12.7 9.4 9.3~9.5 8.3 8.2~8.4 高血压 否 9.0 8.7~9.3 12.6 12.4~12.8 9.4 9.3~9.5 8.4 8.3~8.5 是 9.5 9.1~10.0 13.2 12.8~13.5 9.9 9.6~10.1 9.2 9.0~9.4 BMI 低体重 7.4 6.6~8.2 11.1 10.2~11.9 8.3 7.8~8.8 6.4 5.9~6.9 正常体重 8.4 8.0~8.7 12.2 12.0~12.5 9.2 9.1~9.3 7.9 7.8~8.1 超重 9.7 9.2~10.1 13.1 12.8~13.4 9.7 9.6~9.9 9.2 9.0~9.3 肥胖 11.3 10.5~12.1 14.0 13.4~14.5 10.4 10.4~10.7 10.0 9.8~10.3 注:a 加权后平均盐摄入量及其95%CI。 -
[1] 范芳, 李英华. 国内外减盐干预策略和措施研究进展[J]. 中国公共卫生, 2022, 38(8): 1070 – 1078. doi: 10.11847/zgggws1137783 [2] GBD 2013 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environ-mental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990 – 2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. The Lancet, 2015, 386(10010): 2287 – 2323. doi: 10.1016/S0140-6736(15)00128-2 [3] He FJ, Zhang PH, Li Y, et al. Action on salt China[J]. The Lancet, 2018, 392(10141): 7 – 9. doi: 10.1016/S0140-6736(18)31138-3 [4] World Health Organization. Salt reduction[EB/OL]. (2020 – 04 – 29)[2022 – 09 – 17]. https://www.who.int/news-room/fact-sheets/detail/salt-reduction. [5] 国务院办公厅. 国务院办公厅关于印发国民营养计划(2017 — 2030年)的通知[EB/OL]. (2017 – 07 – 13)[2022 – 09 – 15]. http://www.gov.cn/zhengce/content/2017-07/13/content_5210134.htm?gs_ws=weixin_636356994945697555. [6] McLean RM. Measuring population sodium intake: a review of methods[J]. Nutrients, 2014, 6(11): 4651 – 4662. doi: 10.3390/nu6114651 [7] Wielgosz A, Robinson C, Mao Y, et al. The impact of using different methods to assess completeness of 24-hour urine collec-tion on estimating dietary sodium[J]. The Journal of Clinical Hypertension, 2016, 18(6): 581 – 584. doi: 10.1111/jch.12716 [8] Santos JA, Rosewarne E, Hogendorf M, et al. Estimating mean population salt intake in Fiji and Samoa using spot urine samples[J]. Nutrition Journal, 2019, 18(1): 55. doi: 10.1186/s12937-019-0484-9 [9] Xu JW, Zhang JY, Liu M, et al. Estimating 24-hour sodium excretion from spot urine samples in Chinese adults: can spot urine substitute 24-hour urine samples?[J]. Nutrients, 2020, 12(3): 798. doi: 10.3390/nu12030798 [10] 徐伟, 陈叶纪, 许精巧, 等. 安徽省居民低钠盐知晓和使用情况及影响因素分析[J]. 安徽预防医学杂志, 2022, 28(1): 77 – 82. doi: 10.19837/j.cnki.ahyf.2022.01.017 [11] 中国疾病预防控制中心, 中国疾病预防控制中心慢性非传染性疾病预防控制中心. 中国慢性病及危险因素监测报告2018[M]. 北京: 人民卫生出版社, 2021. [12] Armstrong T, Bull F. Development of the World Health Organiza-tion global physical activity questionnaire (GPAQ)[J]. Journal of Public Health, 2006, 14(2): 66 – 70. doi: 10.1007/s10389-006-0024-x [13] 中华人民共和国国家卫生和计划生育委员会. WS/T 428 — 2013 成人体重判定[S]. 北京: 中国质检出版社, 中国标准出版社, 2013. [14] 安徽省统计局. 安徽统计年鉴 — 2019[M]. 北京: 中国统计出版社, 2020. [15] Kawasaki T, Itoh K, Uezono K, et al. A simple method for estimating 24-h urinary sodium and potassium excretion from second morning voiding urine specimen in adults[J]. The Journal of Clinical Hypertension, 1993, 20(1): 7 – 14. [16] Tanaka T, Okamura T, Miura K, et al. A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen[J]. Journal of Human Hypertension, 2002, 16(2): 97 – 103. doi: 10.1038/sj.jhh.1001307 [17] Lerchl K, Rakova N, Dahlmann A, et al. Agreement between 24-hour salt ingestion and sodium excretion in a controlled environ-ment[J]. Hypertension, 2015, 66(4): 850 – 857. doi: 10.1161/HYPERTENSIONAHA.115.05851 [18] Brown IJ, Tzoulaki I, Candeias V, et al. Salt intakes around the world: implications for public health[J]. International Journal of Epidemiology, 2009, 38(3): 791 – 813. doi: 10.1093/ije/dyp139 [19] Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability[J]. Psychological Bulletin, 1979, 86(2): 420 – 428. doi: 10.1037/0033-2909.86.2.420 [20] Santos JA, Webster J, Land MA, et al. Dietary salt intake in the Australian population[J]. Public Health Nutrition, 2017, 20(11): 1887 – 1894. doi: 10.1017/S1368980017000799 [21] 国家卫生计生委疾病预防控制局. 中国居民营养与慢性病状况报告(2015年)[M]. 北京: 人民卫生出版社, 2015. [22] 张吉玉, 张丙银, 唐俊利, 等. 山东省居民高盐饮食对死亡和期望寿命的影响[J]. 中华流行病学杂志, 2021, 42(3): 527 – 530. doi: 10.3760/cma.j.cn112338-20200306-00268 [23] Zhang Y, Peng YG, Li K, et al. Assessing whether a spot urine specimen can predict 24-h urinary sodium excretion accurately: a validation study[J]. Journal of Hypertension, 2019, 37(1): 99 – 108. doi: 10.1097/HJH.0000000000001879 [24] Peng YG, Li W, Wang Y, et al. Validation and assessment of three methods to estimate 24-h urinary sodium excretion from spot urine samples in Chinese adults[J]. PLoS One, 2016, 11(2): e0149655. doi: 10.1371/journal.pone.0149655 [25] Xu JW, Du XF, Bai YM, et al. Assessment and validation of spot urine in estimating the 24-h urinary sodium, potassium, and sodium/potassium ratio in Chinese adults[J]. Journal of Human Hypertension, 2020, 34(2): 184 – 192. doi: 10.1038/s41371-019-0274-z [26] Tan M, He FJ, Wang CQ, et al. Twenty-four-hour urinary sodium and potassium excretion in China: a systematic review and meta-analysis[J]. Journal of the American Heart Association, 2019, 8(14): e012923. doi: 10.1161/JAHA.119.012923 -