高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中山市体检老年人腹部肥胖指标与高血压患病关系

冯小燕 王军义 吴珊 王之浩 李律蓉 黄纪龙 陈青松 沈天然

冯小燕, 王军义, 吴珊, 王之浩, 李律蓉, 黄纪龙, 陈青松, 沈天然. 中山市体检老年人腹部肥胖指标与高血压患病关系[J]. 中国公共卫生, 2023, 39(11): 1397-1406. doi: 10.11847/zgggws1140468
引用本文: 冯小燕, 王军义, 吴珊, 王之浩, 李律蓉, 黄纪龙, 陈青松, 沈天然. 中山市体检老年人腹部肥胖指标与高血压患病关系[J]. 中国公共卫生, 2023, 39(11): 1397-1406. doi: 10.11847/zgggws1140468
FENG Xiaoyan, WANG Junyi, WU Shan, WANG Zhihao, LI Lürong, HUANG Jilong, CHEN Qingsong, SHEN Tianran. Associations of abdominal obesity indexes with hypertension in elderly physical examinees in Zhongshan city: a cross-sectional analysis[J]. Chinese Journal of Public Health, 2023, 39(11): 1397-1406. doi: 10.11847/zgggws1140468
Citation: FENG Xiaoyan, WANG Junyi, WU Shan, WANG Zhihao, LI Lürong, HUANG Jilong, CHEN Qingsong, SHEN Tianran. Associations of abdominal obesity indexes with hypertension in elderly physical examinees in Zhongshan city: a cross-sectional analysis[J]. Chinese Journal of Public Health, 2023, 39(11): 1397-1406. doi: 10.11847/zgggws1140468

中山市体检老年人腹部肥胖指标与高血压患病关系

doi: 10.11847/zgggws1140468
基金项目: 广州市基础研究计划(202201010545);国家级大学生创新创业训练计划一般创业训练项目(202110573003X)
详细信息
    作者简介:

    冯小燕(1996 – ),硕士在读,研究方向:公共卫生

    通信作者:

    沈天然,E-mail:shentrgz@163.com

Associations of abdominal obesity indexes with hypertension in elderly physical examinees in Zhongshan city: a cross-sectional analysis

More Information
  • 摘要:   目的  探讨广东省中山市体检老年人腹部肥胖指标与高血压患病的关系,为高血压的预防控制提供参考依据。  方法  基于2020年中山市 ≥ 65岁老年人免费体检项目收集2020年6 — 9月在中山市民众镇和火炬开发区参与体检的8318名 ≥ 65岁老年人的体检资料,应用多因素非条件logistic回归模型分析中山市老年人颈围(NC)、腰围(WC)、腰臀比(WHR)、腰高比(WHtR)、脂质累积产物(LAP)和中国内脏肥胖指数(CVAI)等腹部肥胖指标与高血压患病的关系,并应用限制性立方样条分析NC与高血压患病风险的剂量 – 反应关系。  结果  中山市 ≥ 65岁体检老年人的高血压患病率为45.5%,其中男性和女性体检老年人的高血压患病率分别为44.4%和46.4%;男性高血压和非高血压体检老年人的NC、WC、WHR、WHtR、LAP、CVAI平均值分别为(37.29 ± 2.83)cm和(36.41 ± 2.82)cm、(87.90 ± 9.51)cm和(84.40 ± 9.59)cm、(0.93 ± 0.07)和(0.91 ± 0.07)、(0.54 ± 0.06)和(0.52 ± 0.06)、(42.00 ± 38.70)和(32.54 ± 31.22)、(116.19 ± 42.01)和(98.42 ± 42.94),女性高血压和非高血压体检老年人的NC、WC、WHR、WHtR、LAP、CVAI平均值分别为(33.91 ± 2.67)cm和(33.04 ± 2.55)cm、(86.52 ± 9.48)cm和(83.24 ± 9.50)cm、(0.91 ± 0.07)和(0.90 ± 0.07)、(0.57 ± 0.06)和(0.55 ± 0.06)、(58.08 ± 46.96)和(46.98 ± 39.47)、(133.18 ± 30.78)和(119.80 ± 30.25),男性和女性高血压体检老年人的NC、WC、WHR、WHtR、LAP、CVAI平均值均高于非高血压老年人(均P < 0.001);在调整了年龄、文化程度、婚姻状况、家庭人均月收入、吸烟情况、饮酒情况、运动情况、有无咸菜食用习惯、体质指数(BMI)以及空腹血糖(FPG)、总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白胆固醇(HDL-C)水平等混杂因素后,多因素非条件logistic回归分析结果显示,男性体检老年人NC第三四分位数和最高四分位数高血压患病风险分别为NC最低四分位数的1.314倍(OR = 1.314,95%CI = 1.029~1.676)和1.512倍(OR = 1.512,95%CI = 1.131~2.022),男性体检老年人WHtR第二四分位数高血压患病风险为WHtR最低四分位数的0.636倍(OR = 0.636,95%CI = 0.469~0.863),女性体检老年人NC第二四分位数、第三四分位数和最高四分位数高血压患病风险分别为NC最低四分位数的1.214倍(OR = 1.214,95%CI = 1.009~1.463)、1.289倍(OR = 1.289,95%CI = 1.084~1.532)和1.503倍(OR = 1.503,95%CI = 1.223~1.846);在调整了年龄、文化程度、婚姻状况、家庭人均月收入、吸烟情况、饮酒情况、运动情况、有无咸菜食用习惯、BMI以及FPG、TC、TG、LDL-C和HDL-C水平等混杂因素后,限制性立方样条分析结果显示,男性和女性体检老年人NC与高血压患病风险均存在线性剂量 – 反应关系(χ2 = 94.62和128.22,均P < 0.001)。  结论  中山市体检老年人NC与高血压患病风险存在正向线性相关关系。
  • 图  1  中山市 ≥ 65岁男性和女性体检老年人NC与高血压患病风险的限制性立方样条图

    注:图中结果调整了年龄、文化程度、婚姻状况、家庭人均月收入、吸烟情况、饮酒情况、运动情况、有无咸菜食用习惯、BMI以及FPG、TC、TG、LDL-C和HDL-C水平等混杂因素,阴影中的线代表了男性和女性NC限制性立方样条图的调整优势。

    Figure  1.  Associations of neck circumference with adjusted odds ratio of hypertension among male and female physical examinees aged ≥ 65 years in Zhongshan city: restrictive cubic spline diagram

    表  1  中山市不同组别 ≥ 65岁男性体检老年人一般特征计数资料比较

    Table  1.   Differences in education, marital status, household monthly income per capita, smoking, alcohol drinking, exercise, salted vegetable consumption, and body mass index between hypertensive and nonhypertensive among 8 318 male physical examinees aged ≥ 65 years in Zhongshan city, 2020

    项目高血压(N = 1534)非高血压(N = 1 915)χ2P
    例数%人数%
    文化程度 小学及以下 954 62.2 1132 59.1 4.958 0.175
    初中 347 22.6 447 23.3
    高中/中专/技校 171 11.1 256 13.4
    大专及以上 62 4.0 80 4.2
    婚姻状况 未婚 29 1.9 17 0.9 26.32 < 0.001
    已婚/同居 1302 84.9 1697 88.6
    离婚/分居/丧偶 203 13.2 201 10.5
    家庭人均月收入(元) ≤ 500 65 4.2 80 4.2 2.67 0.445
    501~2000 1022 66.6 1243 64.9
    2001~4000 254 16.6 358 18.7
    > 4000 193 12.6 234 12.2
    吸烟情况 不吸烟 765 49.9 880 46.0 23.43 < 0.001
    吸烟 454 29.6 712 37.2
    已戒烟 315 20.5 323 16.9
    饮酒情况 不饮酒 1 095 71.4 1 258 65.7 12.72 < 0.001
    饮酒 439 28.6 657 34.3
    运动情况 不运动 1040 67.8 1393 72.7 10.02 0.002
    运动 494 32.2 522 27.3
    有无咸菜食用习惯 1210 78.9 1587 82.9 8.86 0.003
    324 21.1 328 17.1
    BMI 体重过轻 53 3.5 140 7.3 63.34 < 0.001
    正常体重 743 48.4 1070 55.9
    超重 579 37.7 588 30.7
    肥胖 159 10.4 117 6.1
    下载: 导出CSV

    表  2  中山市不同组别 ≥ 65岁男性体检老年人一般特征计量资料比较

    Table  2.   Differences in age, fasting plasma glucose, lipid indexes, physique indicators, lipid accumulation product, Chinese visceral adiposity index between hypertensive and nonhypertensive among 8 318 male physical examinees aged ≥ 65 years in Zhongshan city, 2020

    项目高血压非高血压tP
    年龄(岁)72.94 ± 5.7871.46 ± 5.43– 8.67 < 0.001
    FPG(mmol/L)5.57 ± 2.165.60 ± 2.140.410.683
    TC(mmol/L)4.91 ± 1.024.95 ± 0.991.280.200
    TG(mmol/L)1.73 ± 1.211.55 ± 1.00– 4.78 < 0.001
    LDL-C(mmol/L)2.91 ± 0.832.98 ± 0.842.240.025
    HDL-C(mmol/L)1.32 ± 0.361.43 ± 0.398.37 < 0.001
    NC(cm)37.29 ± 2.8336.41 ± 2.82– 9.09 < 0.001
    WC(cm)87.90 ± 9.5184.40 ± 9.59– 10.71 < 0.001
    WHR0.93 ± 0.070.91 ± 0.07– 0.34 < 0.001
    WHtR0.54 ± 0.060.52 ± 0.06– 10.64 < 0.001
    LAP42.00 ± 38.7032.54 ± 31.22– 7.76 < 0.001
    CVAI116.19 ± 42.0198.42 ± 42.94– 12.19 < 0.001
    下载: 导出CSV

    表  3  中山市不同组别 ≥ 65岁女性体检老年人一般特征计数资料比较

    Table  3.   Differences in education, marital status, household monthly income per capita, smoking, alcohol drinking, exercise, salted vegetable consumption, and body mass index between hypertensive and nonhypertensive among 4 869 female physical examinees aged ≥ 65 years in Zhongshan city, 2021

    项目高血压(N = 2258)非高血压(N = 2611)χ2P
    例数%人数%
    文化程度 小学及以下 1 836 81.3 2 041 78.2 10.55 0.014
    初中 274 12.1 339 13.0
    高中/中专/技校 123 5.4 188 7.2
    大专及以上 25 1.1 43 1.6
    婚姻状况 未婚 40 1.8 38 1.5 11.28 0.004
    已婚/同居 1441 63.8 1785 68.4
    离婚/分居/丧偶 777 34.4 788 30.2
    家庭人均月收入(元) ≤ 500 61 2.7 110 4.2 22.51 < 0.001
    501~2000 1722 76.3 1 874 71.8
    2001~4000 336 14.9 397 15.2
    > 4000 139 6.2 230 8.8
    吸烟情况 不吸烟 2176 96.4 2524 96.7 1.18 0.555
    吸烟 55 29.1 64 2.5
    已戒烟 27 1.2 23 0.9
    饮酒情况 不饮酒 2108 93.4 2342 89.7 20.62 < 0.001
    饮酒 150 6.6 269 10.3
    运动情况 不运动 1559 69.0 1 895 72.6 7.34 0.007
    运动 699 31.0 716 27.4
    有无咸菜食用习惯 1800 79.7 2123 81.3 1.96 0.161
    458 20.3 488 18.7
    BMI 体重过轻 84 3.7 184 7.0 111.19 < 0.001
    正常体重 912 40.4 1324 50.7
    超重 897 39.7 854 32.7
    肥胖 365 16.2 249 9.5
    下载: 导出CSV

    表  4  中山市不同组别 ≥ 65岁女性体检老年人一般特征计量资料比较

    Table  4.   Differences in age, fasting plasma glucose, lipid indexes, physique indicators, lipid accumulation product, and Chinese visceral adiposity index between hypertensive and nonhypertensive among 4 869 female physical examinees aged ≥ 65 years in Zhongshan city, 2020

    项目高血压非高血压tP
    年龄(岁)72.94 ± 5.7871.46 ± 5.43– 8.67 < 0.001
    FPG(mmol/L)5.61 ± 2.075.55 ± 2.56– 0.890.374
    TC(mmol/L)5.47 ± 1.15.42 ± 1.06– 1.330.180
    TG(mmol/L)1.96 ± 1.331.79 ± 1.21– 4.67 < 0.001
    LDL-C(mmol/L)3.27 ± 0.943.27 ± 0.88– 0.110.991
    HDL-C(mmol/L)1.39 ± 0.341.47 ± 0.377.36 < 0.001
    NC(cm)33.91 ± 2.6733.04 ± 2.55– 11.57 < 0.001
    WC(cm)86.52 ± 9.4883.24 ± 9.50– 12.06 < 0.001
    WHR0.91 ± 0.070.90 ± 0.07– 8.79 < 0.001
    WHtR0.57 ± 0.060.55 ± 0.06– 11.48 < 0.001
    LAP58.08 ± 46.9646.98 ± 39.47– 8.85 < 0.001
    CVAI133.18 ± 30.78119.80 ± 30.25– 15.27 < 0.001
    下载: 导出CSV

    表  5  中山市 ≥ 65岁男性体检老年人腹部肥胖指标与高血压患病关系单因素和多因素非条件logistic回归分析

    Table  5.   Associations of neck circumference, waist circumference, waist-height ratio, waist-to-hip ratio, lipid accumulation product, and Chinese visceral adiposity index with hypertension among male physical examinees aged ≥ 65 years in Zhongshan city: univariate and unconditional multivariate logistic regression analysis

    因素调查人数高血压单因素分析多因素分析 a
    患病例数患病率(%)OR95%CIPOR95%CIP
    NC 最低四分位数( < 35.0 cm) 1154 425 36.8 1.000 1.000
    第二四分位数(35.0~36.9 cm) 972 394 40.5 1.094 0.904~1.323 0.358 0.961 0.781~1.183 0.708
    第三四分位数(37.0~38.9 cm) 742 382 51.5 1.596 1.280~1.990 < 0.001 1.314 1.029~1.676 0.028
    最高四分位数( ≥ 39.0 cm) 581 333 57.3 1.973 1.522~2.558 < 0.001 1.512 1.131~2.022 0.005
    WC 最低四分位数( < 79.0 cm) 894 294 32.9 1.000 1.000
    第二四分位数(79.0~85.9 cm) 867 361 41.6 1.372 1.112~1.692 0.003 1.280 0.885~1.850 0.190
    第三四分位数(86.0~92.9 cm) 911 434 47.6 1.701 1.348~2.147 < 0.001 1.157 0.703~1.905 0.566
    最高四分位数( ≥ 93.0 cm) 777 445 57.3 2.423 1.832~3.203 < 0.001 1.440 0.771~2.689 0.253
    WHR 最低四分位数( < 0.88) 875 301 34.4 1.000 1.000
    第二四分位数(0.88~0.91) 854 343 40.2 1.150 0.935~1.414 0.187 1.019 0.788~1.317 0.889
    第三四分位数(0.92~0.95) 850 414 48.7 1.479 1.194~1.830 < 0.001 1.180 0.874~1.594 0.280
    最高四分位数( ≥ 0.96) 870 476 54.7 1.755 1.397~2.204 < 0.001 1.227 0.874~1.722 0.236
    WHtR 最低四分位数( < 0.49) 866 301 34.8 1.000 1.000
    第二四分位数(0.49~0.52) 860 329 38.3 1.002 0.810~1.239 0.986 0.636 0.469~0.863 0.004
    第三四分位数(0.53~0.56) 864 419 48.5 1.498 1.188~1.888 0.001 0.725 0.491~1.071 0.106
    最高四分位数( ≥ 0.57) 859 485 56.5 1.828 1.382~2.417 < 0.001 0.719 0.450~1.149 0.168
    LAP 最低四分位数( < 15.00) 863 287 33.3 1.000 1.000
    第二四分位数(15.00~27.50) 862 354 41.1 1.312 1.062~1.622 0.012 1.136 0.866~1.492 0.357
    第三四分位数(27.51~46.75) 862 417 48.4 1.727 1.366~2.184 < 0.001 1.223 0.870~1.720 0.246
    最高四分位数( ≥ 46.76) 862 476 55.2 2.429 1.765~3.342 < 0.001 1.416 0.899~2.231 0.133
    CVAI 最低四分位数( < 75.96) 863 272 31.5 1.000 1.000
    第二四分位数(75.96~107.93) 862 346 40.1 1.331 1.075~1.649 0.009 1.212 0.835~1.757 0.312
    第三四分位数(107.94~136.55) 862 423 49.1 1.861 1.469~2.358 < 0.001 1.447 0.863~2.427 0.161
    最高四分位数( ≥ 136.56) 862 493 57.2 2.368 1.782~3.148 < 0.001 1.240 0.650~2.366 0.514
      注:a 调整了年龄、文化程度、婚姻状况、家庭人均月收入、吸烟情况、饮酒情况、运动情况、有无咸菜食用习惯、BMI以及FPG、TC、TG、LDL-C和HDL-C水平等混杂因素。
    下载: 导出CSV

    表  6  中山市 ≥ 65岁女性体检老年人腹部肥胖指标与高血压患病关系单因素和多因素非条件logistic回归分析

    Table  6.   Associations of neck circumference, waist circumference, waist-height ratio, waist-to-hip ratio, lipid accumulation product, and Chinese visceral adiposity index with hypertension among female physical examinees aged ≥ 65 years in Zhongshan city: univariate and unconditional multivariate logistic regression analysis

    变量调查人数高血压单因素分析多因素分析 a
    患病例数患病率(%)OR95%CIPOR95%CIP
    NC 最低四分位数( < 32.0 cm) 1 823 684 37.5 1.000 1.000
    第二四分位数(32.0~32.9 cm) 760 350 46.1 1.267 1.055~1.521 0.011 1.214 1.009~1.463 0.040
    第三四分位数(33.0~34.9 cm) 1318 665 50.5 1.378 1.169~1.625 < 0.001 1.289 1.084~1.532 0.004
    最高四分位数( ≥ 35.0 cm) 968 559 57.7 1.677 1.379~2.039 < 0.001 1.503 1.223~1.846 < 0.001
    WC 最低四分位数( < 78.0 cm) 1226 442 36.1 1.000 1.000
    第二四分位数(78.0~84.9 cm) 1357 579 42.7 0.168 0.980~1.393 0.084 0.995 0.770~1.284 0.967
    第三四分位数(85.0~90.9 cm) 1125 549 48.8 1.342 1.095~1.644 0.005 1.036 0.740~1.450 0.837
    最高四分位数( ≥ 91.0 cm) 1161 688 59.3 1.874 1.485~2.363 < 0.001 1.437 0.956~2.160 0.081
    WHR 最低四分位数( < 0.86) 1215 456 37.5 1.000 1.000
    第二四分位数(0.86~0.89) 1219 530 43.5 1.072 0.902~1.274 0.428 1.027 0.847~1.245 0.788
    第三四分位数(0.90~0.94) 1228 614 50.0 1.267 1.062~1.511 0.009 1.144 0.918~1.426 0.230
    最高四分位数( ≥ 0.95) 1207 658 54.5 1.335 1.110~1.606 0.002 1.091 0.850~1.399 0.494
    WHtR 最低四分位数( < 0.52) 1219 437 35.8 1.000 1.000
    第二四分位数(0.52~0.55) 1224 522 42.6 1.134 0.947~1.359 0.171 0.978 0.761~1.256 0.860
    第三四分位数(0.56~0.61) 1209 607 50.2 1.326 1.083~1.625 0.006 0.957 0.698~1.313 0.787
    最高四分位数( ≥ 0.62) 1217 692 56.9 1.470 1.165~1.856 0.001 0.781 0.534~1.142 0.202
    LAP 最低四分位数( < 25.30) 1219 438 35.9 1.000 1.000
    第二四分位数(25.30~41.59) 1217 526 43.2 1.157 0.966~1.386 0.114 1.018 0.817~1.267 0.877
    第三四分位数(41.60~65.29) 1216 611 50.2 1.457 1.177~1.804 0.001 1.067 0.795~1.433 0.665
    最高四分位数( ≥ 65.30) 1217 683 56.1 1.661 1.263-2.185 < 0.001 0.971 0.662~1.424 0.880
    CVAI 最低四分位数( < 105.20) 1218 410 33.7 1.000 1.000
    第二四分位数(105.20~125.79) 1217 490 40.3 1.163 0.961~1.407 0.121 1.015 0.799~1.291 0.902
    第三四分位数(125.80~146.59) 1217 613 50.4 1.551 1.227~1.962 < 0.001 1.205 0.870~1.670 0.263
    最高四分位数( ≥ 146.60) 1217 745 61.2 2.084 1.521~2.855 < 0.001 1.412 0.912~2.184 0.122
      注:a 调整了年龄、文化程度、婚姻状况、家庭人均月收入、吸烟情况、饮酒情况、运动情况、有无咸菜食用习惯、BMI以及FPG、TC、TG、LDL-C和HDL-C水平等混杂因素。
    下载: 导出CSV
  • [1] Natsis M, Antza C, Doundoulakis I, et al. Hypertension in obesity: novel insights[J]. Current Hypertension Reviews, 2020, 16(1): 30 – 36.
    [2] Di Palo KE, Barone NJ. Hypertension and heart failure: prevention, targets, and treatment[J]. Heart Failure Clinics, 2020, 16(1): 99 – 106. doi: 10.1016/j.hfc.2019.09.001
    [3] 王增武, 李苏宁. 老年高血压患病率一路“走高”[J]. 养生大世界, 2019(12): 34 – 36.
    [4] Lüscher TF. Novel insights into body fat distribution and cardiometabolic risk[J]. European Heart Journal, 2019, 40(34): 2833 – 2836. doi: 10.1093/eurheartj/ehz634
    [5] Koenen M, Hill MA, Cohen P, et al. Obesity, adipose tissue and vascular dysfunction[J]. Circulation Research, 2021, 128(7): 951 – 968. doi: 10.1161/CIRCRESAHA.121.318093
    [6] 王亮亮, 黄瑜, 郭伟, 等. 肥胖和中心性肥胖对高血压的交互作用分析[J]. 预防医学, 2022, 34(2): 129 – 134. doi: 10.19485/j.cnki.issn2096-5087.2022.02.005
    [7] Khanna D, Peltzer C, Kahar P, et al. Body mass index (BMI): a screening tool analysis[J]. Cureus, 2022, 14(2): e22119.
    [8] Korhonen PE, Mikkola T, Kautiainen H, et al. Both lean and fat body mass associate with blood pressure[J]. European Journal of Internal Medicine, 2021, 91: 40 – 44. doi: 10.1016/j.ejim.2021.04.025
    [9] Nazare JA, Smith J, Borel AL, et al. Usefulness of measuring both body mass index and waist circumference for the estimation of visceral adiposity and related cardiometabolic risk profile (from the INSPIRE ME IAA study)[J]. The American Journal of Cardiology, 2015, 115(3): 307 – 315. doi: 10.1016/j.amjcard.2014.10.039
    [10] Xia MF, Lin HD, Chen LY, et al. Association of visceral adiposity and its longitudinal increase with the risk of diabetes in Chinese adults: a prospective cohort study[J]. Diabetes/Metabolism Research and Reviews, 2018, 34(7): e3048. doi: 10.1002/dmrr.3048
    [11] Garvey WT, Mechanick JI, Brett EM, et al. American association of clinical endocrinologists and American College of Endocrin-ology comprehensive clinical practice guidelines for medical care of patients with obesity[J]. Endocrine Practice, 2016, 22 Suppl 3: 1 – 203.
    [12] Omura-Ohata Y, Son C, Makino H, et al. Efficacy of visceral fat estimation by dual bioelectrical impedance analysis in detecting cardiovascular risk factors in patients with type 2 diabetes[J]. Cardiovascular Diabetology, 2019, 18(1): 137. doi: 10.1186/s12933-019-0941-y
    [13] Zhao L, Huang GL, Xia FZ, et al. Neck circumference as an independent indicator of visceral obesity in a Chinese population[J]. Lipids in Health and Disease, 2018, 17(1): 85. doi: 10.1186/s12944-018-0739-z
    [14] Varghese M, Song JR, Singer K. Age and Sex: impact on adipose tissue metabolism and inflammation[J]. Mechanisms of Ageing and Development, 2021, 199: 111563. doi: 10.1016/j.mad.2021.111563
    [15] del Moral-Trinidad LE, Romo-González T, Carmona Figueroa YP, et al. Potential for body mass index as a tool to estimate body fat in young people[J]. Enfermería Clínica (English Edition), 2021, 31(2): 99 – 106.
    [16] Streng KW, Voors AA, Hillege HL, et al. Waist-to-hip ratio and mortality in heart failure[J]. European Journal of Heart Failure, 2018, 20(9): 1269 – 1277. doi: 10.1002/ejhf.1244
    [17] Peer N, Lombard C, Steyn K, et al. Waist-to-height ratio is a useful indicator of cardio-metabolic risk in South Africa[J]. Family Practice, 2020, 37(1): 36 – 42.
    [18] Ahn N, Baumeister SE, Amann U, et al. Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes[J]. Scientific Reports, 2019, 9(1): 9693. doi: 10.1038/s41598-019-46187-8
    [19] Qiao TT, Luo T, Pei HL, et al. Association between abdominal obesity indices and risk of cardiovascular events in Chinese populations with type 2 diabetes: a prospective cohort study[J]. Cardiovascular Diabetology, 2022, 21(1): 225. doi: 10.1186/s12933-022-01670-x
    [20] 中华医学会健康管理学分会, 中华健康管理学杂志编委会. 健康体检基本项目专家共识[J]. 中华健康管理学杂志, 2014, 8(2): 81 – 90. doi: 10.3760/cma.j.issn.1674-0815.2014.02.004
    [21] 郑新, 井丽, 刘文利, 等. 2018年辽宁省农村 ≥ 40岁居民肥胖患病率及其相关影响因素分析[J]. 中国公共卫生, 2020, 36(12): 1817 – 1821.
    [22] Feng XY, Wang JY, Wang SP, et al. Correlation analysis of anthropometric indices and type 2 diabetes mellitus in residents aged 60 years and older[J]. Frontiers in Public Health, 2023, 11: 1122509. doi: 10.3389/fpubh.2023.1122509
    [23] 李楠, 李智文, 李舜, 等. 中国山西省部分农村妇女食用腌制咸菜与高血压的关联研究[J]. 中国生育健康杂志, 2017, 28(3): 201 – 204, 211.
    [24] 《中国成人超重和肥胖预防控制指南》修订委员会. 中国成人超重和肥胖预防控制指南(2021)[M]. 北京: 人民卫生出版社, 2021.
    [25] 《中国高血压防治指南》修订委员会. 中国高血压防治指南(2018年修订版)[M]. 北京: 人民卫生出版社, 2018.
    [26] Wang ZW, Chen Z, Zhang LF, et al. Status of hypertension in China: results from the China hypertension survey, 2012 – 2015[J]. Circulation, 2018, 137(22): 2344 – 2356. doi: 10.1161/CIRCULATIONAHA.117.032380
    [27] Commodore-Mensah Y, Samuel LJ, Dennison-Himmelfarb CR, et al. Hypertension and overweight/obesity in Ghanaians and Nigerians living in West Africa and industrialized countries: a systematic review[J]. Journal of Hypertension, 2014, 32(3): 464 – 472. doi: 10.1097/HJH.0000000000000061
    [28] Mozafar Saadati H, Sabour S, Mansournia MA, et al. Effect modification of general and central obesity by sex and age on cardiovascular outcomes: targeted maximum likelihood estimation in the atherosclerosis risk in communities study[J]. Diabetes and Metabolic Syndrome:Clinical Research and Reviews, 2021, 15(2): 479 – 485. doi: 10.1016/j.dsx.2021.02.024
    [29] 吴永君, 张维森, 周柏靖, 等. 自然绝经年龄与绝经后肥胖关系[J]. 中国公共卫生, 2022, 38(12): 1544 – 1548. doi: 10.11847/zgggws1138576
    [30] 陈冯梅, 郭志荣, 海波, 等. 体质指数、腰围、腰臀比和腰高比对高血压发病影响前瞻性队列研究[J]. 中国公共卫生, 2021, 37(12): 1774 – 1777.
    [31] Sardinha LB, Santos DA, Silva AM, et al. A comparison between BMI, waist circumference, and waist-to-height ratio for identifying cardio-metabolic risk in children and adolescents[J]. PLoS One, 2016, 11(2): e0149351. doi: 10.1371/journal.pone.0149351
    [32] Momin M, Fan FF, Li JP, et al. Joint effects of body mass index and waist circumference on the incidence of hypertension in a community-based Chinese population[J]. Obesity Facts, 2020, 13(2): 245 – 255. doi: 10.1159/000506689
    [33] Hingorjo MR, Zehra S, Imran E, et al. Neck circumference: a supplemental tool for the diagnosis of metabolic syndrome[J]. JPMA. The Journal of the Pakistan Medical Association, 2016, 66(10): 1221 – 1226.
    [34] Kroll C, Mastroeni SSBS, Czarnobay SA, et al. The accuracy of neck circumference for assessing overweight and obesity: a systematic review and meta-analysis[J]. Annals of Human Biology, 2017, 44(8): 667 – 677. doi: 10.1080/03014460.2017.1390153
    [35] Saneei P, Shahdadian F, Moradi S, et al. Neck circumference in relation to glycemic parameters: a systematic review and meta-analysis of observational studies[J]. Diabetology and Metabolic Syndrome, 2019, 11(1): 50. doi: 10.1186/s13098-019-0445-7
    [36] Alzeidan R, Fayed A, Hersi AS, et al. Performance of neck circumference to predict obesity and metabolic syndrome among adult Saudis: a cross-sectional study[J]. BMC Obesity, 2019, 6(1): 13. doi: 10.1186/s40608-019-0235-7
    [37] Assyov Y, Gateva A, Tsakova A, et al. A comparison of the clinical usefulness of neck circumference and waist circumference in individuals with severe obesity[J]. Endocrine Research, 2017, 42(1): 6 – 14. doi: 10.3109/07435800.2016.1155598
    [38] Preis SR, Massaro JM, Hoffmann U, et al. Neck circumference as a novel measure of cardiometabolic risk: the Framingham Heart study[J]. The Journal of Clinical Endocrinology and Metabolism, 2010, 95(8): 3701 – 3710. doi: 10.1210/jc.2009-1779
    [39] Namazi N, Larijani B, Surkan PJ, et al. The association of neck circumference with risk of metabolic syndrome and its components in adults: a systematic review and meta-analysis[J]. Nutrition, Metabolism and Cardiovascular Diseases, 2018, 28(7): 657 – 674. doi: 10.1016/j.numecd.2018.03.006
    [40] Singh R, Barrios A, Dirakvand G, et al. Human brown adipose tissue and metabolic health: potential for therapeutic avenues[J]. Cells, 2021, 10(11): 3030. doi: 10.3390/cells10113030
    [41] 张成龙. 血浆游离脂肪酸、β2微球蛋白水平与冠心病患者冠脉病变严重程度的相关性分析[D]. 长沙: 中南大学, 2014.
    [42] Aoi S, Miyake T, Harada T, et al. Neck circumference has possibility as a predictor for metabolic syndrome in postmeno-pausal women[J]. Hiroshima Journal of Medical Sciences, 2014, 63(4): 27 – 32.
    [43] Henderson GC. Plasma free fatty acid concentration as a modifiable risk factor for metabolic disease[J]. Nutrients, 2021, 13(8): 2590. doi: 10.3390/nu13082590
    [44] Shi J, Wang ZX, Zhang WW, et al. Neck circumference as an independent predictor for NAFLD among postmenopausal women with normal body mass index[J]. Nutrition and Metabolism, 2021, 18(1): 30. doi: 10.1186/s12986-021-00562-3
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  99
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 接收日期:  2023-02-28
  • 录用日期:  2023-10-13
  • 修回日期:  2023-08-14
  • 网络出版日期:  2023-11-28
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回