Mediating role of blood pressure on the association of body mass index with cardiovascular disease risk
-
摘要:
目的 探讨血压在体质指数(BMI)与心血管疾病(CVD)发生风险间的中介效应,为CVD的预防控制提供参考依据。 方法 于2011年6 — 9月采用多阶段分层随机抽样方法在山东省抽取15600名常住居民进行问卷调查、体格检查和实验室检测,通过山东省心脑血管疾病和死因监测系统随访到13688名常住居民截至2021年10月11日的CVD结局信息;采用单因素和多因素Cox比例风险回归模型分析BMI与CVD发生风险的关系,拟合基于Cox比例风险回归模型的限制性立方样条(RCS)分析BMI与CVD发生风险之间的剂量 – 反应关系,并采用依次检验法分析血压在BMI与CVD发生风险间的中介效应。 结果 山东省有效调查的15350名常住居民中,利用居民身份证号码共匹配到13688名居民截至2021年10月11日的CVD结局信息,随访率为89.17 %,共随访133733.79人年,中位随访时间为10.25年;剔除51名主要研究数据缺失者以及基线自报有冠心病病史254例和有脑卒中病史115例后,对最终纳入13268名研究对象进行分析。截至随访观察终点时发生CVD结局事件者492例,发病密度为367.90/10万人年;低体重组、正常体重组、超重组和肥胖组居民发生CVD结局事件者分别为22、173、183和114例,发病密度分别为380.08/10万人年、285.84/10万人年、410.42/10万人年和499.25/10万人年。在调整了性别、年龄、文化程度、婚姻状况、家庭年均收入、居住地、地区、是否吸烟、是否饮酒、是否身体活动不足、是否高血压、是否糖尿病、是否血脂异常、每日盐摄入量和每日油摄入量等混杂因素后,多因素Cox比例风险回归模型分析结果显示,超重组居民发生CVD结局事件的风险为正常体重组居民的1.253倍(HR = 1.253,95 % CI = 1.014~1.548);剂量 – 反应关系分析显示BMI与CVD发生风险呈“J”形关系(χ2总趋势 = 29.87,P总趋势 = 0.004;χ2非线性 = 7.08,P非线性 = 0.069);中介效应分析显示,BMI与CVD发生风险的直接效应为0.038(Z = 11.644,P < 0.001),收缩压(SBP)、舒张压(DBP)和是否高血压的中介效应分别为0.022(Z = 12.354,P < 0.001)、0.041(Z = 10.859,P < 0.001)和0.133(Z = 11.506,P < 0.001),其中介作用百分比分别为36.67 %、51.90 %和77.78 %。 结论 血压在BMI与CVD发生风险间的关联中具有较强的中介效应,应重点关注超重或肥胖个体的血压变化情况并及时进行干预和指导。 -
关键词:
- 心血管疾病(CVD) /
- 发生风险 /
- 体质指数(BMI) /
- 高血压 /
- 中介效应
Abstract:Objective To investigate mediating role of blood pressure on the association of body mass index (BMI) with cardiovascular disease (CVD) risk and to provide evidence for control of CVD risk. Methods Using stratified multistage random sampling and a self-designed questionnaire, a baseline survey including face-to-face interview, physical examination and laboratory tests were conducted among 15 600 permanent urban/rural residents aged 18 – 69 years during June – September, 2021 in Shandong province; then the residents were followed up to October 11, 2021 through the Cardiovascular Diseases and Mortality Surveillance System to collect the information on the prevalence of CVD. Univariate and multivariate Cox proportional risk regression model was used to analyze the association of body mass index (BMI) with the risk of CVD. The dose-response relationship between BMI and CVD risk was described with restricted cubic splines (RCS). The mediating role of blood pressure on the association of BMI with CVD risk was assessed with sequential test. Results Of all the residents at the baseline survey, 89.17% (13 688) were followed up; after excluding those with previous history of coronary heart disease (n = 254) and stroke (n = 115) and those without valid outcome information, 13 268 participants were finally included in the analysis, with a total follow-up of 133 733.79 person-years and a median follow-up period of 10.25 years. By the end of the follow-up among the participants, totally 492 CVD incidences were identified and the CVD incidence density was 367.90/100 000 person-years. The number of CVD incidence was 22, 173, 183, and 114 among the participants with low-weight, normal-weight, overweight, and obesity, with the corresponding CVD incidence densities (1/100 000 person-years) of 380.08, 285.84, 410.42, and 499.25, respectively. After adjusting for age, gender, education, marital status, annual household income, living area (urban/rural), geographical region of residence (central/southeast/northwest), smoking, alcohol drinking, physical activity, daily salt intake, daily oil intake, and disease history of hypertension, diabetes or dyslipidemia, multivariate Cox proportional risk regression model analysis showed that the participants with overweight were at an increased risk of CVD incidence (hazard risk [HR] = 1.253, 95% confidence interval [95% CI]: 1.014 – 1.548) compared to those with normal weight. Dose-response analysis revealed a J-shaped relationship between BMI and the risk of CVD (χ2overall = 29.87, P overall = 0.004; χ2nonlinear = 7.08, Pnonlinear = 0.069). Mediating effect analysis demonstrated that the direct effect of BMI on CVD incidence risk was 0.038 (Z = 11.644, P < 0.001) and the mediating effect of systolic blood pressure (SBP), diastolic blood pressure (DBP) and hypertension was 0.022 (Z = 12.354, P < 0.001), 0.041 (Z = 10.589, P < 0.001) and 0.133 (Z = 11.506, P < 0.001). The mediating effect percentages of SBP, DBP pressure and hypertension were 36.67%, 51.90% and 77.78%, respectively. Conclusion Blood pressure has a strong mediating effect on the association of BMI with CVD risk. The results suggested that more attention and intervention on the changes of blood pressure need to be promoted among overweight and obesity populations. -
Key words:
- cardiovascular diseases /
- incidence risk /
- body mass index /
- hypertension /
- mediating effect
-
表 1 不同BMI亚组常住居民基线特征计数资料比较
特征 低体重组(n = 576) 正常体重组(n = 5991) 超重组(n = 4423) 肥胖组(n = 2278) χ2 值 P 值 n % n % n % n % 性别 男性 275 47.74 3050 50.91 2220 50.19 1082 47.50 3.529 0.060 女性 301 52.26 2941 49.09 2203 49.81 1196 52.50 文化程度 a 小学及以下 171 29.79 1956 32.72 1581 35.81 807 35.47 17.460 < 0.001 初中及以上 403 70.21 4022 67.28 2834 64.19 1468 64.53 婚姻状况 a 非在婚 184 31.94 851 14.21 355 8.03 182 7.99 348.797 < 0.001 在婚 392 68.06 5138 85.79 4066 91.97 2096 92.01 家庭年均收入(元) < 5000 275 47.74 2701 45.08 1 920 43.41 1007 44.21 9.275 0.010 5000~15000 246 42.71 2811 46.92 2044 46.21 1049 46.05 > 15000 55 9.55 479 8.00 459 10.38 222 9.75 居住地 城市 176 30.56 1567 26.16 1278 28.89 706 30.99 13.286 0.001 农村 400 69.44 4424 73.84 3145 71.11 1572 69.01 地区 鲁东 127 22.05 1300 21.70 1049 23.73 561 24.63 14.087 0.001 鲁中南 224 38.89 2295 38.31 1727 39.05 889 39.03 鲁西北 225 39.06 2396 39.99 1647 37.24 828 36.35 是否吸烟 a 否 402 70.03 4009 66.98 3064 69.38 1660 72.90 20.098 < 0.001 是 172 29.97 1976 33.02 1352 30.62 617 27.10 是否饮酒 a 否 386 68.08 3492 59.47 2547 58.62 1330 59.72 3.519 0.061 是 181 31.92 2381 40.53 1798 41.38 897 40.28 是否身体活动不足 a 否 104 18.12 4973 83.40 3557 80.77 1827 80.66 9.882 0.002 是 470 81.88 990 16.60 847 19.23 438 19.34 是否高血压 否 528 91.67 5282 88.17 3380 76.42 1358 59.61 863.721 < 0.001 是 48 8.33 709 11.83 1043 23.58 920 40.39 是否糖尿病 a 否 565 98.26 5759 96.45 4089 92.72 2028 89.14 188.084 < 0.001 是 10 1.74 212 3.55 321 7.28 247 10.86 是否血脂异常 否 531 92.19 5495 91.72 3783 85.53 1849 81.17 200.374 < 0.001 是 45 7.81 496 8.28 640 14.47 429 18.83 注:a 数据有缺失。 表 2 不同BMI亚组常住居民基线特征计量资料比较(
$\bar x \pm s$ )特征 低体重组 正常体重组 超重组 肥胖组 H 值 P 值 年龄(岁$)$ 36.08 ± 16.67 40.3 ± 14.23 43.54 ± 13.22 43.16 ± 13.14 493.796 < 0.001 SBP(mm Hg) 112.04 ± 17.43 117.2 ± 16.71 123.86 ± 17.73 129.68 ± 19.38 1126.838 < 0.001 DBP(mm Hg) 71.47 ± 9.66 75.37 ± 10.25 81.05 ± 10.71 86.76 ± 11.67 2011.076 < 0.001 FPG(mmol/L) 5.21 ± 1.21 5.41 ± 1.18 5.71 ± 1.44 5.95 ± 1.55 637.752 < 0.001 TC(mmol/L) 3.94 ± 0.86 4.20 ± 0.93 4.52 ± 0.95 4.65 ± 0.93 669.313 < 0.001 TG(mmol/L) 0.83 ± 0.61 1.09 ± 1.36 1.62 ± 1.89 2.09 ± 2.36 1685.161 < 0.001 HDL-C(mmol/L) 1.53 ± 0.39 1.49 ± 0.36 1.38 ± 0.33 1.29 ± 0.30 695.315 < 0.001 LDL-C(mmol/L) 1.86 ± 0.50 2.06 ± 0.58 2.31 ± 0.60 2.42 ± 0.63 1039.482 < 0.001 每日摄盐量(g,$\bar x \pm s$) 7.12 ± 3.45 7.52 ± 3.95 7.78 ± 4.18 7.85 ± 4.22 9619.187 0.475 每日摄油量(g,$\bar x \pm s$) 34.75 ± 38.99 39.72 ± 242.98 36.09 ± 23.71 40.84 ± 182.2 209.533 0.380 -
[1] Balakumar P, Maung-U K, Jagadeesh G. Prevalence and preven-tion of cardiovascular disease and diabetes mellitus[J]. Pharmac-ological Research, 2016, 113: 600 – 609. doi: 10.1016/j.phrs.2016.09.040 [2] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521 – 545. doi: 10.3969/j.issn.1000-3614.2021.06.001 [3] 王小焕, 胡锡敏, 郭彧, 等. 海南省成年居民高血压与心脑血管疾病发病关系前瞻性队列研究[J]. 中国公共卫生, 2019, 35(8): 986 – 991. doi: 10.11847/zgggws1120178 [4] Hermida RC, Crespo JJ, Domínguez-Sardiña M, et al. Bedtime hypertension treatment improves cardiovascular risk reduction: the Hygia Chronotherapy Trial[J]. European Heart Journal, 2020, 41(48): 4565 – 4576. doi: 10.1093/eurheartj/ehz754 [5] Kachur S, Lavie CJ, de Schutter A, et al. Obesity and cardio-vascular diseases[J]. Minerva Medica, 2017, 108(3): 212 – 228. [6] Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice[J]. European Heart Journal, 2016, 37(29): 2315 – 2381. doi: 10.1093/eurheartj/ehw106 [7] Zhou QG, Liu XJ, Zhao Y, et al. BMI and risk of all - cause mortality in normotensive and hypertensive adults: the rural Chinese cohort study[J]. Public Health Nutrition, 2021, 24(17): 5805 – 5814. doi: 10.1017/S1368980021001592 [8] 李杰, 姚应水, 金岳龙, 等. 安徽省不同性别老年人肥胖现状及其与高血压关系[J]. 中国公共卫生, 2014, 30(10): 1295 – 1298. doi: 10.11847/zgggws2014-30-10-19 [9] 于国防, 郭晓雷, 李维卡, 等. 山东省疾病监测点居民死因分析[J]. 中国公共卫生, 2004, 20(6): 725 – 726. doi: 10.3321/j.issn:1001-0580.2004.06.054 [10] Bi ZQ, Liang XF, Xu AQ, et al. Hypertension prevalence, awareness, treatment, and control and sodium intake in Shandong Province, China: baseline results from Shandong – Ministry of Health Action on Salt Reduction and Hypertension (SMASH), 2011[J]. Preventing Chronic Disease, 2014, 11: E88. [11] Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour[J]. British Journal of Sports Medicine, 2020, 54(24): 1451 – 1462. doi: 10.1136/bjsports-2020-102955 [12] 孙长颢. 营养与食品卫生学[M]. 7版. 北京: 人民卫生出版社, 2012. [13] 中国高血压防治指南修订委员会, 高血压联盟(中国), 中华医学会心血管病学分会中国医师协会高血压专业委员会, 等. 中国高血压防治指南(2018年修订版)[J]. 中国心血管杂志, 2019, 24(1): 24 – 56. doi: 10.3969/j.issn.1007-5410.2019.01.002 [14] 国家卫生健康委. 中国居民营养与慢性病状况报告 —— 2020年[M]. 北京: 人民卫生出版社, 2021. [15] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4): 315 – 409. [16] 中国成人血脂异常防治指南修订联合委员会. 中国成人血脂异常防治指南(2016年修订版)[J]. 中华全科医师杂志, 2017, 16(1): 15 – 35. doi: 10.3760/cma.j.issn.1671-7368.2017.01.006 [17] Gillum RF. New considerations in analyzing stroke and heart disease mortality trends: the year 2000 age standard and the international statistical classification of diseases and related health problems, 10th revision[J]. Stroke, 2002, 33(6): 1717 – 1722. doi: 10.1161/01.STR.0000016925.58848.EA [18] 温忠麟, 叶宝娟. 中介效应分析: 方法和模型发展[J]. 心理科学进展, 2014, 22(5): 731 – 745. [19] Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardio-vascular disease: a scientific statement from the American heart association[J]. Circulation, 2021, 143(21): e984 – e1010. [20] Adair KE, Padgett RN, von Waaden N, et al. Metabolic health, obesity, and cardiovascular disease: 2015 – 2016 national health and nutrition examination survey[J]. The American Journal of the Medical Sciences, 2021, 361(2): 244 – 252. doi: 10.1016/j.amjms.2020.09.010 [21] 刘览, 孙敏英, 利耀辉, 等. 广州市老城区心血管病高危人群检出情况及其影响因素分析[J]. 中国公共卫生, 2021, 37(6): 982 – 985. doi: 10.11847/zgggws1127721 [22] Abdullah A, Wolfe R, Stoelwinder JU, et al. The number of years lived with obesity and the risk of all - cause and cause - specific mortality[J]. International Journal of Epidemiology, 2011, 40(4): 985 – 996. doi: 10.1093/ije/dyr018 [23] Seravalle G, Grassi G. Obesity and hypertension[J]. Pharmac-ological Research, 2017, 122: 1 – 7. doi: 10.1016/j.phrs.2017.05.013 [24] 张云飞, 张茜, 水汪, 等. 儿童期超重肥胖与血管结构损害关系[J]. 中国公共卫生, 2020, 36(5): 780 – 784. doi: 10.11847/zgggws1122941 [25] The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment[J]. The Lancet Diabetes and Endocrinology, 2014, 2(8): 634 – 647. doi: 10.1016/S2213-8587(14)70102-0 [26] Colafella KMM, Denton KM. Sex - specific differences in hyper-tension and associated cardiovascular disease[J]. Nature Reviews Nephrology, 2018, 14(3): 185 – 201. doi: 10.1038/nrneph.2017.189 [27] 沈丹洋, 张曼晖, 郭晓敏, 等. 农村男性人群体质指数与心血管疾病死亡关系的前瞻性随访研究[J]. 中华流行病学杂志, 2020, 41(12): 2072 – 2079. doi: 10.3760/cma.j.cn112338-20200515-00728 [28] 李嘉琛, 吕筠, 高萌, 等. 中国成年人体质指数和腰围与主要慢性病风险的关联研究[J]. 中华流行病学杂志, 2019, 40(12): 1541 – 1547. doi: 10.3760/cma.j.issn.0254-6450.2019.12.007 [29] Bhaskaran K, Dos-Santos-Silva I, Leon DA, et al. Association of BMI with overall and cause - specific mortality: a population - based cohort study of 3.6 million adults in the UK[J]. The Lancet Diabetes and Endocrinology, 2018, 6(12): 944 – 953. doi: 10.1016/S2213-8587(18)30288-2 [30] The Global BMI Mortality Collaboration. Body - mass index and all - cause mortality: individual - participant - data meta - analysis of 239 prospective studies in four continents[J]. The Lancet, 2016, 388(10046): 776 – 786. doi: 10.1016/S0140-6736(16)30175-1 [31] Koliaki C, Liatis S, Kokkinos A. Obesity and cardiovascular disease: revisiting an old relationship[J]. Metabolism, 2019, 92: 98 – 107. doi: 10.1016/j.metabol.2018.10.011 [32] Marini S, Merino J, Montgomery BE, et al. Mendelian randomiza-tion study of obesity and cerebrovascular disease[J]. Annals of Neurology, 2020, 87(4): 516 – 524. doi: 10.1002/ana.25686 [33] The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI Mediated Effects). Metabolic mediators of the effects of body - mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1·8 million participants[J]. The Lancet, 2014, 383(9921): 970 – 983. doi: 10.1016/S0140-6736(13)61836-X -

计量
- 文章访问数: 279
- HTML全文浏览量: 103
- PDF下载量: 38
- 被引次数: 0