Association of exposure to residential green space and cardiovascular disease incidence among rural adult residents in Xinjiang: a prospective cohort study
-
摘要:
目的 了解新疆农村居民住宅绿地暴露与心血管疾病(CVD)发病的关系,为该人群的CVD一级预防提供理论基础与数据支持。 方法 采用前瞻性队列研究方法,于2016年9月采用典型抽样的方法在新疆生产建设兵团第三师51团招募12813名 ≥ 18岁农村常住居民进行基线调查,并分别于2019年4月、2020年6月、2021年7月和2022年6月对9659名住址信息完整且基线调查无CVD的居民进行了4次随访调查;采用广义线性混合模型(GLMM)和Cox比例风险回归模型分析新疆农村居民住宅绿地暴露与CVD发病的关系,并采用亚组分析方法分析各分层因素对绿地暴露与CVD发病风险关联的潜在影响。 结果 截至2022年6月,9659名新疆农村居民中失访655人,失访率为6.78%。最终纳入分析的9004名新疆农村居民共随访49565.76人年,平均随访(5.50 ± 1.09)人年,随访期间CVD发病762例,发病密度为153.73/万人年,CVD累积发病率为8.46%。发生CVD组新疆农村居民的NDVI250 m、NDVI500 m和NDVI1 000 m平均值分别为(0.229 ± 0.068)、(0.265 ± 0.067)和(0.298 ± 0.060),均低于未发生CVD组新疆农村居民NDVI250 m、NDVI500 m和NDVI1 000 m平均值的(0.242 ± 0.063)、(0.278 ± 0.060)和(0.308 ± 0.053),差异均有统计学意义(均P < 0.001)。在调整了性别、年龄、文化程度、婚姻状况、体力活动水平和PM2.5等混杂因素后,GLMM模型分析结果显示,新疆农村居民NDVI250 m、NDVI500 m和NDVI1 000 m每增加1个四分位数间距的β值分别为 – 0.200、– 0.169和 – 0.200;Cox比例风险回归模型分析结果显示,NDVI250 m、NDVI500 m和NDVI1 000 m每增加1个四分位数间距,新疆农村居民的CVD发病风险可降低14.4%(HR = 0.856,95%CI = 0.798~0.919)、14.3%(HR = 0.857,95%CI = 0.800~0.918)和16.7%(HR = 0.833,95%CI = 0.755~0.896)。在调整了性别、年龄、文化程度、婚姻状况、体力活动水平、PM2.5中除分层因素外的其他混杂因素后,亚组分析结果显示,住宅绿地暴露对年龄 ≤ 50岁和体力活动水平较高的新疆农村居民具有更强的保护作用,NDVI250 m、NDVI500 m和NDVI1 000 m每增加1个四分位数间距,年龄 ≤ 50岁新疆农村居民的CVD发病风险可降低20.7%(HR = 0.793,95%CI = 0.720~0.874)、20.3%(HR = 0.797,95%CI = 0.726~0.875)和24.1%(HR = 0.759,95%CI = 0.688~0.837);NDVI250 m每增加1个四分位数间距,体力活动水平较高新疆农村居民的CVD发病风险可降低28.9%(HR = 0.711,95%CI = 0.613~0.825)。 结论 较高的住宅绿地暴露水平可以降低新疆农村居民CVD的发病风险。 Abstract:Objective To examine the relationship between exposure to residential green space and the incidence of cardiovascular disease (CVD) among rural residents in Xinjiang Production and Construction Corps (Xinjiang). Methods Totally 12 813 rural residents aged ≥ 18 years and living in local regions at least one year were recruited with typical sampling in Xinjiang for a face-to-face baseline questionnaire survey during September 2016 and 9 659 of them without CVD and with complete residence information at the baseline survey were followed up four times in April 2019, June 2020, July 2021, and June 2022. Generalized linear model (GLMM) and Cox proportional hazards regression model were used to analyze the relationship between exposure to residential green space (measured with normalized difference vegetation index [NDVI] for the region between a participant′s residential location and the center of the residential area) and CVD incidence among the participants. Subgroup analysis was performed to explore potential impact of each stratification factor on the relationship between exposure to residential green space and CVD incidence risk. Results Of the 9 659 cohort participants, 9 004 were followed-up and 655 (6.78%) were lost to follow-up by the end of the study (June 2022). During the follow-up of 49 565.76 person-years (PYs) totally and 5.50 ± 1.09 PYs averagely among the 9 004 participants finally included in the analysis, overall 762 CVD cases were identified; the CVD incidence density was 153.73/10 000 PYs and the CVD cumulative incidence was 8.46%. The mean values of NDVI250 m, NDVI500 m, and NDVI1 000 m were 0.229 ± 0.068, 0.265 ± 0.067, and 0.298 ± 0.060 for the followed-up participants with CVD incidence and 0.242 ± 0.063, 0.278 ± 0.060, and 0.308 ± 0.053 for those without CVD, respectively, with significant differences in the NDVI values between the two groups (all P < 0.001). After adjusting for gender, age, education, marital status, physical activity and particulate matter less than 2.5 microns in aerodynamic diameter (PM2.5), the results of GLMM model analysis revealed the β coefficients of – 0.200, – 0.169, and – 0.200 for CVD incidence associated with each quartile increase in the values of NDVI250 m, NDVI500 m, and NDVI1 000 m. The results of Cox proportional hazards regression model analysis also showed that each quartile increase in the values of NDVI250 m, NDVI500 m, and NDVI1 000 m was associated with 14.4% (hazard risk [HR] = 0.856, 95% confidence interval [95%CI]: 0.798 – 0.919), 14.3% (HR = 0.857, 95%CI: 0.800 – 0.918), and 16.7% (HR = 0.833, 95%CI: 0.755 – 0.896) reduction in CVD incidence risk. After adjusting for gender, age, education, marital status, physical activity and PM2.5 (except for when used as a stratifica-tion variable), subgroup analysis results further demonstrated that each quartile increase in the values of NDVI250 m, NDVI500 m, and NDVI1 000 m was associated with much higher reduction of 20.7% (HR = 0.793, 95%CI: 0.720 – 0.874), 20.1% (HR = 0.797, 95%CI: 0.726 – 0.875) and 24.1% (HR = 0.759, 95%CI: 0.688 – 0.837) in CVD incidence risk for the followed participants aged 50 years and younger; and for the followed participants with higher intensity of physical activity, each quartile increase in the values of NDVI250 m was associated with a 28.9% (HR = 0.711, 95%CI: 0.613 – 0.825) reduction in CVD incidence risk. Conclusion Higher exposure to residential green space could be associated with reduced CVD incidence risk among rural residents in Xinjiang. -
表 1 新疆不同特征农村居民随访期间CVD发病情况比较
Table 1. CVD incidence by demographics and physical activity among 9 004 adult rural residents in Xinjiang Production and Construction Corps during four follow-ups after a baseline survey, 2016 – 2022
特征 调查人数 CVD发病例数 CVD累积发病率(%) χ2 值 P 值 性别 男性 4607 296 6.43 50.576 < 0.001 女性 4397 466 10.60 年龄(岁) ≤ 50 7366 416 5.65 414.283 < 0.001 > 50 1638 346 21.12 文化程度 小学及以下 6181 608 9.84 48.022 < 0.001 初中及以上 2823 154 5.46 婚姻状况 非在婚 1267 49 3.87 40.197 < 0.001 在婚 7737 713 9.22 体力活动水平 低 6700 574 8.57 0.367 0.544 高 2304 188 8.16 表 2 不同组别新疆农村居民住宅绿地暴露和PM2.5暴露水平比较($ \bar{x} $ ± s)
Table 2. CVD-non-CVD disparity in normalized difference vegetation index (NDVI) and PM2.5 among 9 004 adult rural residents in Xinjiang Production and Construction Corps at baseline survey, 2016($ \bar{x} $ ± s)
指标 发生CVD组 未发生CVD组 t 值 P 值 NDVI250 m 0.229 ± 0.068 0.242 ± 0.063 5.227 < 0.001 NDVI500 m 0.265 ± 0.067 0.278 ± 0.060 5.009 < 0.001 NDVI1 000 m 0.298 ± 0.060 0.308 ± 0.053 4.225 < 0.001 PM2.5,(μg/m3) 103.92 ± 0.98 103.86 ± 0.94 – 1.832 0.067 表 3 新疆农村居民住宅绿地暴露与CVD发病关系的亚组分析
Table 3. Subgroup-specific hazard risks of CVD associated with a quartile increase in NDVI after adjusting other factors among 9 004 adult rural residents followed up during 2016 – 2022 in Xinjiang Production and Construction Corps
因素 NDVI250 m NDVI500 m NDVI1 000 m HR 值 95%CI P 值 a HR 值 95%CI P 值 a HR 值 95%CI P 值 a 性别 男性 0.841 0.748~0.945 0.426 0.867 0.776~0.968 0.819 0.825 0.736~0.925 0.984 女性 0.860 0.786~0.940 0.844 0.773~0.922 0.833 0.759~0.914 年龄(岁) ≤ 50 0.793 0.720~0.874 0.021 0.797 0.726~0.875 0.047 0.759 0.688~0.837 0.029 > 50 0.936 0.842~1.040 0.937 0.845~1.038 0.928 0.834~1.033 文化程度 小学及以下 0.870 0.805~0.941 0.259 0.851 0.788~0.920 0.565 0.846 0.780~0.919 0.639 初中及以上 0.797 0.673~0.944 0.882 0.758~1.025 0.792 0.677~0.927 婚姻状况 非在婚 0.688 0.506~0.936 0.302 0.709 0,546~0.922 0.230 0.711 0.534~0.948 0.803 在婚 0.866 0.805~0.931 0.867 0.808~0.932 0.841 0.781~0.906 体力活动水平 低 0.904 0.833~0.981 0.004 0.869 0.799~0.945 0.259 0.860 0.791~0.935 0.102 高 0.711 0.613~0.825 0.825 0.728~0.936 0.761 0.660~0.877 注:a 为交互作用的P值。 -
[1] Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990 – 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. The Lancet, 2020, 396(10258): 1204 – 1222. doi: 10.1016/S0140-6736(20)30925-9 [2] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553 – 578. doi: 10.3969/j.issn.1000-3614.2022.06.001 [3] Klompmaker JO, Hart JE, James P, et al. Air pollution and cardiovascular disease hospitalization – Are associations modified by greenness, temperature and humidity?[J]. Environment Inter-national, 2021, 156: 106715. doi: 10.1016/j.envint.2021.106715 [4] Xing Q, Sun ZB, Tao Y, et al. Impacts of urbanization on the temperature-cardiovascular mortality relationship in Beijing, China[J]. Environmental Research, 2020, 191: 110234. doi: 10.1016/j.envres.2020.110234 [5] Liu XX, Ma XL, Huang WZ, et al. Green space and cardiovascular disease: a systematic review with meta-analysis[J]. Environmental Pollution, 2022, 301: 118990. doi: 10.1016/j.envpol.2022.118990 [6] Yang BY, Hu LW, Jalaludin B, et al. Association between residential greenness, cardiometabolic disorders, and cardiovascular disease among adults in China[J]. JAMA Network Open, 2020, 3(9): e2017507. doi: 10.1001/jamanetworkopen.2020.17507 [7] Bloemsma LD, Gehring U, Klompmaker JO, et al. Green space, air pollution, traffic noise and cardiometabolic health in adolescents: the PIAMA birth cohort[J]. Environment International, 2019, 131: 104991. doi: 10.1016/j.envint.2019.104991 [8] 何佳, 齐浩月, 李毓, 等. 新疆哈萨克族农村居民不同肥胖程度和类型与心血管病发病关系[J]. 中国公共卫生, 2022, 38(3): 297 – 301. doi: 10.11847/zgggws1133020 [9] Samoli E, Stergiopoulou A, Santana P, et al. Spatial variability in air pollution exposure in relation to socioeconomic indicators in nine European metropolitan areas: a study on environmental inequality[J]. Environmental Pollution, 2019, 249: 345 – 353. doi: 10.1016/j.envpol.2019.03.050 [10] Yang BY, Liu KK, Markevych I, et al. Association between residential greenness and metabolic syndrome in Chinese adults[J]. Environment International, 2020, 135: 105388. doi: 10.1016/j.envint.2019.105388 [11] Wei J, Li ZQ, Lyapustin A, et al. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications[J]. Remote Sensing of Environment, 2021, 252: 112136. doi: 10.1016/j.rse.2020.112136 [12] Wei J, Li ZQ, Cribb M, et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space – time extremely randomized trees[J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3273 – 3289. doi: 10.5194/acp-20-3273-2020 [13] 北京协和医院世界卫生组织, 国际分类家族合作中心. 疾病和有关健康问题的国际统计分类第十次修订本(ICD-10)[M]. 北京: 人民卫生出版社, 2008: 603 – 668. [14] Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote sensing of Environment, 1979, 8(2): 127 – 150. doi: 10.1016/0034-4257(79)90013-0 [15] Dong XK, Tu RQ, Zhang LL, et al. Residential greenness and atherosclerotic cardiovascular disease risk in a rural Chinese adult population[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112458. doi: 10.1016/j.ecoenv.2021.112458 [16] Seo S, Choi S, Kim K, et al. Association between urban green space and the risk of cardiovascular disease: a longitudinal study in seven Korean metropolitan areas[J]. Environment International, 2019, 125: 51 – 57. doi: 10.1016/j.envint.2019.01.038 [17] Liao NS, Van Den Eeden SK, Sidney S, et al. Joint associations between neighborhood walkability, greenness, and particulate air pollution on cardiovascular mortality among adults with a history of stroke or acute myocardial infarction[J]. Environmental Epidemi-ology, 2022, 6(2): e200. doi: 10.1097/EE9.0000000000000200 [18] Liu T, Cai B, Peng WJ, et al. Association of neighborhood greenness exposure with cardiovascular diseases and biomarkers[J]. International Journal of Hygiene and Environmental Health, 2021, 234: 113738. doi: 10.1016/j.ijheh.2021.113738 [19] De Keijzer C, Foraster M, Basagaña X, et al. Long-term green space exposure and progression of arterial stiffness: the Whitehall II cohort study[J]. Environmental Health Perspectives, 2020, 128(6): 067014. doi: 10.1289/EHP6159 [20] Dadvand P, Bartoll X, Basagaña X, et al. Green spaces and General Health: roles of mental health status, social support, and physical activity[J]. Environment International, 2016, 91: 161 – 167. doi: 10.1016/j.envint.2016.02.029 [21] Ke P, Xu M, Xu J, et al. Association of residential greenness with the risk of metabolic syndrome in Chinese older adults: a longitudinal cohort study[J]. Journal of Endocrinological Investigation, 2023, 46(2): 327 – 335. -

计量
- 文章访问数: 81
- HTML全文浏览量: 37
- PDF下载量: 12
- 被引次数: 0