Mediating effect of depressive symptoms on occupational stress and work-related musculoskeletal disorders: an online cross-sectional survey among petrochemical enterprise employees
-
摘要:
目的 探讨抑郁症状在石化企业员工职业紧张与工作相关肌肉骨骼疾患(WMSDs)间的中介效应,为制定WMSDs的干预措施提供科学依据。 方法 采用整群抽样方法于2021年7 — 10月在江苏省某石油化工企业抽取4066名员工进行问卷调查,采用Spearman秩相关分析其职业紧张、抑郁症状与WMSDs的关系,并采用分层回归分析和Bootstrap法验证抑郁症状在职业紧张与WMSDs间的中介效应。 结果 最终纳入分析的3763名石化企业员工中,检出WMSDs者2934例,WMSDs检出率为77.97%。石化企业员工WMSDs得分为(3.47 ± 3.17)分,抑郁症状得分为(10.04 ± 5.99)分;职业紧张得分为(45.79 ± 9.48)分,其中社会支持、组织与回报、要求与付出和自主性维度得分分别为(19.81 ± 3.75)、(15.85 ± 4.94)、(12.35 ± 3.39)和(4.62 ± 1.80)分。Spearman秩相关分析结果显示,石化企业员工WMSDs得分与职业紧张、组织与回报、要求与付出和抑郁症状得分均呈正相关(r = 0.334、0.284、0.202和0.463,均P < 0.01),与社会支持和自主性得分均呈负相关(r = – 0.256和 – 0.141,均P < 0.01);石化企业员工抑郁症状得分与职业紧张、组织与回报和要求与付出得分均呈正相关(r = 0.621、0.540和0.410,均P < 0.01),与社会支持和自主性得分均呈负相关(r = – 0.419和 – 0.196,均P < 0.01);石化企业员工职业紧张得分与组织与回报和要求与付出得分均呈正相关(r = 0.848和0.639,均P < 0.01),与社会支持和自主性得分均呈负相关(r = – 0.648和– 0.310,均P < 0.01)。中介效应分析结果显示,抑郁症状在石化企业员工职业紧张的社会支持和要求与付出维度与WMSDs间具有部分中介效应,中介效应值分别为– 0.137(– 0.155~– 0.120)和0.177(0.159~0.196),中介效应百分比分别为72.87%和78.67%;抑郁症状在石化企业员工职业紧张的组织与回报和自主性维度与WMSDs间具有完全中介效应,中介效应值分别为0.146(0.131~0.160)和– 0.126(– 0.158~– 0.094),中介效应百分比分别为90.12%和98.44%。 结论 石化企业员工WMSDs检出率较高,抑郁症状在其职业紧张与WMSDs间具有中介效应,可通过缓解员工的抑郁症状来预防或减少部分WMSDs的发生。 -
关键词:
- 工作相关肌肉骨骼疾患(WMSDs) /
- 抑郁症状 /
- 职业紧张 /
- 中介效应 /
- 石化企业员工
Abstract:Objective To explore the mediating effect of depressive symptoms on occupational stress and work-related musculoskeletal disorders (WMSDs) in employees of petrochemical enterprises for developing intervention measures on WMSDs. Methods Totally 4 066 employees were recruited with cluster sampling from a petrochemical enterprise in Jiangsu province for an online survey conducted during July – October 2021. Core Occupational Stress Scale (COSS), Patient Health Questionnaire-9 (PHQ-9), and two questionnaire on demographics and WMSDs developed by Chinese researchers previously were used in the survey. Spearman rank correlation analysis was adopted to analyze the relationships between occupational stress, depression symptoms, and WMSDs; hierarchical regression analysis and bootstrap method were used to verify the mediating effect of depressive symptoms on the correlation between occupational stress and WMSDs. Results Of the 3 763 participants with valid responses, 2 934 (77.97%) were assessed as having WMSDs during past one year. The participants' mean scores were 3.47 ± 3.17 on WMSDs and 10.04 ± 5.99 on depressive symptoms; the mean score on occupational stress was 45.79 ± 9.48, with the dimensional scores of 19.81 ± 3.75 on social support, 15.85 ± 4.94 on organization and reward, 12.35 ± 3.39 on demand and effort, and 4.62 ± 1.80 on autonomy, respectively. Spearman rank correlation analysis revealed following significant correlations among partici-pants' scores on WMSDs, occupational stress and its dimensions, and depression symptoms: (1) positive correlations of WMSDs with overall occupational stress (r = 0.334), occupational stress dimensions of organization and reward (r = 0.284) and demand and effort (r = 0.202), and depression symptoms (r = 0.463) (P < 0.01 for all); (2) negative correlations of WMSDs with occupational stress dimensions of social support (r = – 0.256) and autonomy (r = – 0.141) (both P < 0.01); (3) positive correlations of depression symptoms with overall occupational stress (r = 0.621), occupational stress dimensions of organization and reward (r = 0.540) and demand and effort (r = 0.410) (P < 0.01 for all); (4) negative correlations of depression symptoms with social support (r = – 0.419) and autonomy (r = – 0.196) (both P < 0.01); (5) positive correlations of overall occupational stress with occupational stress dimensions of organization and reward (r = 0.848) and demand and effort (r = 0.639) (both P < 0.01); and (6) negative correlations of overall occupational stress with occupational stress dimensions of social support (r = – 0.648) and autonomy (r = – 0.310) (both P < 0.01). The results of mediating effect analysis showed that depressive symptoms had a partial mediating effect on the correlations of WMSDs with occupational stress dimensions of social support (effect value = – 0.137; confidence interval [CI]: –0.155, – 0.120; effect percentage = 72.87%) and demand and effort (effect value = 0.177; CI: 0.159, 0.196; effect percentage = 78.67%) but a complete mediating effect on the correlations of WMSDs with occupational stress dimensions of organization and reward (effect value = 0.146; CI: 0.131, 0.160; effect percentage = 90.12%) and autonomy (effect value = – 0.126; CI: – 0.158, – 0.094; effect percentage = 98.44%). Conclusion Among the employees in a petrochemical enterprise in a province of China, the detection rate of WMSDs was high and depressive symptoms showed a mediating effect on the correlation of occupational stress with WMSDs, suggesting that the prevalence of WMSDs could be decreased through intervention on depression symptoms in the occupational population. -
表 1 不同特征石化企业员工WMSDs检出情况比较
Table 1. Detection rate of WMSDs by demographic and occupation factors among 3 763 employees of a petrochemical enterprise in Jiangsu province, China
特征 调查人数 WMSDs检出人数 WMSDs检出率(%) χ2 值 P 值 性别 男性 3046 2336 76.69 15.224 < 0.001 女性 717 598 83.40 年龄(岁) ≤ 30 443 290 65.46 67.836 < 0.001 31~40 452 336 74.34 41~50 1469 1223 83.25 > 50 1399 1085 77.56 文化程度 初中及以下 161 123 76.40 31.979 < 0.001 高中/中专 1202 988 82.20 大专/高职 1171 916 78.22 本科 992 747 75.30 硕士及以上 237 160 67.51 婚姻状况 未婚 374 249 66.58 33.008 < 0.001 已婚 3128 2470 78.96 离异/丧偶 261 215 82.38 月平均收入(元) < 3000 59 49 83.05 17.888 0.003 3000~4999 635 516 81.26 5000~6999 891 716 80.36 7000~8999 896 700 78.13 9000~10999 729 545 74.76 ≥ 11000 553 408 73.78 职务 一般工作人员 2962 2303 77.75 24.023 < 0.001 班组长 553 462 83.54 中层干部 248 169 68.15 岗位工龄(年) ≤ 5 1131 819 72.41 19.143 < 0.001 6~10 700 560 80.00 11~20 815 657 80.61 > 20 1117 898 80.39 表 2 石化企业员工职业紧张、抑郁症状与WMSDs得分的Spearman相关分析
Table 2. Correlation coefficients between scores on COSS, PHQ-9 and WMSDs among 3 763 employees of a petrochemical enterprise in Jiangsu province, China: Spearman correlation analysis
项目 社会支持 组织与回报 要求与付出 自主性 抑郁症状 WMSDs 职业紧张 – 0.648 a 0.848 a 0.639 a – 0.310 a 0.621 a 0.334 a 社会支持 1.000 – 0.391 a – 0.126 a 0.171 a – 0.419 a – 0.256 a 组织与回报 1.000 0.439 a – 0.132 a 0.540 a 0.284 a 要求与付出 1.000 – 0.062 a 0.410 a 0.202 a 自主性 1.000 – 0.196 a – 0.141 a 抑郁症状 1.000 0.463 a WMSDs 1.000 注:a P < 0.01。 表 3 石化企业员工职业紧张、抑郁症状与WMSDs关系的分层回归分析
Table 3. Relationships between scores on COSS, PHQ-9 and WMSDs among 3 763 employees of a petrochemical enterprise in Jiangsu province, China: hierarchical regression analysis
变量 第1步 第2步 第3步 β t 值 P 值 β t 值 P 值 β t 值 P 值 性别 0.027 1.651 0.099 0.077 4.849 < 0.001 0.083 5.555 < 0.001 年龄 0.041 1.937 0.053 0.051 2.546 0.011 0.075 3.960 < 0.001 文化程度 – 0.076 – 3.954 < 0.001 – 0.047 – 2.511 0.012 – 0.034 – 1.919 0.055 婚姻状况 0.072 4.035 < 0.001 0.055 3.214 0.001 0.048 3.011 0.003 月平均收入 – 0.103 – 5.801 < 0.001 – 0.090 – 5.291 < 0.001 – 0.073 – 4.567 < 0.001 职务 – 0.040 – 2.303 0.021 – 0.017 – 1.057 0.291 – 0.005 – 0.293 0.770 岗位工龄 0.047 2.443 0.015 0.027 1.454 0.146 0.018 1.065 0.287 社会支持 – 0.159 – 9.744 < 0.001 – 0.062 – 3.880 < 0.001 组织与回报 0.119 6.225 < 0.001 – 0.006 – 0.291 0.771 要求与付出 0.154 8.557 < 0.001 0.055 3.141 0.002 自主性 – 0.028 – 1.801 0.072 0.006 0.381 0.703 抑郁症状 0.397 21.558 < 0.001 F 值 32.750 62.729 103.337 P 值 < 0.001 < 0.001 < 0.001 调整R2 值 0.056 0.153 0.246 ∆R2 值 0.058 0.098 0.093 -
[1] 《中国职业医学》编辑部. 科学防治工作相关肌肉骨骼疾患[J]. 中国职业医学, 2021, 48(5): 565. [2] 别凤赛, 李晓光, 郭金玉, 等. 煤矿工人工作相关肌肉骨骼疾患研究进展[J]. 中国职业医学, 2021, 48(4): 468 – 471. [3] 李嘉杰, 张东枚, 邢晓辉, 等. 广东省县(区)级及以下医疗卫生机构医务人员工作相关肌肉骨骼疾患影响因素分析[J]. 中国职业医学, 2021, 48(6): 684 – 688. [4] 李雪, 孙雪梅, 刘继文. 新疆某煤矿工人职业倦怠及抑郁症状与工作相关肌肉骨骼疾患的关系[J]. 环境与职业医学, 2022, 39(6): 625 – 631. [5] 舒畅, 张丹, 戴俊明, 等. 职业紧张和社会支持对某国网公司员工抑郁症状的影响[J]. 环境与职业医学, 2018, 35(10): 905 – 909, 923. [6] 雷子辉, 冯晶, 申鑫, 等. 中国急诊科护士抑郁症状发生情况及影响因素分析[J]. 中国公共卫生, 2022, 38(12): 1505 – 1509. [7] 韩凤, 王东升, 邹建芳, 等. 煤矿工人职业紧张与职业性肌肉骨骼疾患相关性研究[J]. 中国职业医学, 2018, 45(2): 188 – 193. [8] 刘陈军. 石油化工企业安全管理的特点与对策[J]. 中国石油和化工标准与质量, 2019, 39(16): 67 – 68. [9] 王瑾, 张巧耘, 陈惠清, 等. 中国职业人群职业紧张测量核心量表编制[J]. 中华预防医学杂志, 2020, 54(11): 1184 – 1189. [10] Costantini L, Pasquarella C, Odone A, et al. Screening for depression in primary care with Patient Health Questionnaire - 9 (PHQ - 9): a systematic review[J]. Journal of Affective Disorders, 2021, 279: 473 – 483. doi: 10.1016/j.jad.2020.09.131 [11] 杨磊, Hildebrandt VH, 余善法, 等. 肌肉骨骼疾患调查表介绍附调查表[J]. 工业卫生与职业病, 2009, 35(1): 25 – 31. [12] 董一丹, 娜扎开提·买买提, 王富江, 等. 中国肌肉骨骼疾患问卷编制与验证 —— 附调查问卷[J]. 中国职业医学, 2020, 47(1): 8 – 18. [13] 刘晓曼, 王瑾, 王超, 等. 长工时对互联网企业员工工作相关肌肉骨骼疾患和职业倦怠的影响[J]. 中国职业医学, 2020, 47(2): 135 – 140. [14] 温忠麟, 叶宝娟. 中介效应分析: 方法和模型发展[J]. 心理科学进展, 2014, 22(5): 731 – 745. [15] 江程铭, 李纾. 中介分析和自举 (Bootstrap) 程序应用[J]. 心理学探新, 2015, 35(5): 458 – 463. [16] 彭志恒, 马炜钰, 何易楠, 等. 化学制药行业作业人员的工作相关肌肉骨骼疾患现状及影响因素[J]. 环境与职业医学, 2023, 40(1): 13 – 20. [17] 曾建诚, 杨燕, 钟思武, 等. 某家具制造厂作业人员工作相关肌肉骨骼疾患发生情况及影响因素[J]. 环境与职业医学, 2023, 40(1): 6 – 12,20. [18] 彭邦来, 吴家兵, 祁成, 等. 某汽车厂工人下背痛患病率及其影响因素[J]. 中国公共卫生, 2017, 33(4): 663 – 667. [19] 陈青松. 工作相关肌肉骨骼疾患及其防控[J]. 环境与职业医学, 2023, 40(1): 1 – 5. [20] 何丽华. 关注工作相关肌肉骨骼疾患的防控[J]. 环境与职业医学, 2022, 39(6): 589 – 592. [21] 李小平, 万勇, 袁方, 等. 重庆教师职业紧张状况及对健康的影响[J]. 中国工业医学杂志, 2021, 34(3): 195 – 201. [22] 郝新坤, 徐宏娟, 石水媛, 等. 钢铁工人职业性肌肉骨骼肌疾患状况及职业紧张调查[J]. 工业卫生与职业病, 2020, 46(2): 137 – 139, 142. [23] 冯苗苗, 白春林. 职业紧张对心血管、免疫系统及心理健康影响的研究进展[J]. 中西医结合心脑血管病杂志, 2020, 18(22): 3806 – 3807. [24] 李胜男, 洪怡林, 张巧耘, 等. 心理资本在疾病预防控制人员职业紧张与抑郁症状间的中介效应分析[J]. 环境与职业医学, 2022, 39(4): 419 – 425. [25] 吴金贵, 钮春瑾, 唐传喜, 等. 职业紧张对城市职业人群颈、肩、腰部症状的影响[J]. 职业与健康, 2015, 31(15): 2048 – 2052. [26] Halonen JI, Lallukka T, Virtanen M, et al. Bi - directional relation between effort - reward imbalance and risk of neck - shoulder pain: assessment of mediation through depressive symptoms using occupational longitudinal data[J]. Scandinavian Journal of Work, Environment and Health, 2019, 45(2): 126 – 133. doi: 10.5271/sjweh.3768 [27] Almhdawi KA, Alrabbaie H, Kanaan SF, et al. Predictors and prevalence of lower quadrant work - related musculoskeletal disorders among hospital - based nurses: a cross - sectional study[J]. Journal of Back and Musculoskeletal Rehabilitation, 2020, 33(6): 885 – 896. doi: 10.3233/BMR-191815 -