Associations of changes in waist circumference and BMI with variation of fasting blood glucose among middle aged and elderly at high cardio-vascular risk: a follow-up study in Jiangsu province
-
摘要:
目的 探讨心血管病高危人群腰围和体质指数变化与空腹血糖水平变化的关系,为糖尿病和心血管病的防治提供理论参考依据。 方法 于2015年9月 — 2016年6月基于“中国心血管病高危人群早期筛查与综合干预项目”在江苏省徐州市、连云港、盐城市等8个项目点招募71 758名 ≥ 35岁常住居民进行基线调查,对筛查出的12 369名初筛血糖水平记录完整的心血管病高危人群分别于2017、2018和2019年每年进行1次随访调查,采用广义估计方程分析心血管病高危人群腰围和体质指数变化与空腹血糖水平变化的关系。 结果 江苏省完成3次随访且随访血糖水平完整的9 952名心血管病高危人群中,正常腰围、中心性肥胖前期和中心性肥胖分别有3045人(30.6%)、2130人(21.4%)和4777人(48.0%),体重过轻、正常体重、超重和肥胖分别有56人(0.6%)、2669人(26.8%)、4540人(45.6%)和2687人(27.0%)。在调整了性别、年龄、文化程度、居住地、吸烟情况、饮酒情况、是否高血压、是否糖尿病、是否血脂异常、基线腰围、基线体质指数和随访次序等混杂因素后,广义估计方程分析结果显示,腰围减少和腰围增加心血管病高危人群的空腹血糖升高风险分别为腰围稳定心血管病高危人群的0.911倍(OR = 0.911,95%CI = 0.867~0.958)和1.070倍(OR = 1.070,95%CI = 1.022~1.120);基线腰围每增加1 cm和基线体质指数每增加1,心血管病高危人群空腹血糖水平分别增加0.011(β = 0.011,95%CI = 0.008~0.014)mmol/L和0.027(β = 0.027,95%CI = 0.013~0.041)mmol/L。亚组分析结果显示,基线腰围每增加1 cm,男性、女性、城市、农村、非糖尿病和糖尿病心血管病高危人群空腹血糖水平分别增加0.011、0.010、0.014、0.005、0.007和0.021mmol/L(均P < 0.001);基线体质指数每增加1,女性、城市、农村和非糖尿病心血管病高危人群空腹血糖水平分别增加0.030、0.026、0.024和0.031 mmol/L(均P < 0.05)。 结论 心血管高危人群的腰围和体质指数变化均与空腹血糖水平变化存在正向线性相关关系。 Abstract:Objective To investigate associations of changes in waist circumference (WC) and body mass index (BMI) with the variation of fasting blood glucose among middle aged and elderly residents with high cardiovascular risk. Methods Totally 71 758 urban/rural permanent residents aged 35 years or older were recruited at 8 districts/counties of 3 municipalities, Jiangsu province for a baseline survey conducted during 2015 as a part of the ‘Early Screening and Comprehensive Intervention on Cardiovascular Diseases among High-Risk Populations in China’. Out of those residents surveyed, 12 369 individuals with initial records of fasting blood glucose (FBG) were identified as at high-risk of cardiovascular diseases and the individuals were groups were followed up annually in 2017, 2018, and 2019 to observe changes in their FBG levels over time. The generalized estimating equation (GEE) was used to explore associations of the changes in WC and BMI with the variations of FBG among the participants. Results Of the 9 952 participants at the baseline survey, 3 045 (30.6%), 2 130 (21.4%), and 4 777 (48.0%) had normal WC, pre-central obesity, and obesity and 56 (0.6%), 2 669 (26.8%), 4 540 (45.6%), and 2 687 (27.0%) were assessed as having underweight, normal weight, overweight, and obesity, respectively. After adjusting for gender, age, education, place of residence, smoking, alcohol drinking, hypertension, diabetes mellitus, dyslipidemia, baseline WC, baseline BMI, and follow-up sequence, the results of GEE analysis revealed that compared those the participants with normal WC, the participants having declined WC were at a decreased risk of abnormal FBG (odds ratio [OR] = 0.911, 95% confidence interval [95%CI]: 0.867 – 0.958) but the participants having elevated WC were at an increased risk of abnormal FBG (OR = 1.070, 95%CI: 1.022 – 1.120); the results also showed that every one centimeter increase in baseline WC and one unit increase in baseline BMI were associated with 0.011 mmol/L (β = 0.027, 95%CI: 0.013 – 0.041) and 0.027 mmol/L (β = 0.027, 95%CI: 0.013 – 0.041) increase in FBG. Further subgroup analysis demonstrated that every one centimeter increase in baseline WC was associated with 0.011/0.010, 0.014/0.005, and 0.007/0.021 mmol/L increase in FBG for the participants being male/female, living in urban/rural regions, and with/without diabetes (all P < 0.001); while, every one unit increase in baseline BMI was associated with 0.030, 0.026/0.024, and 0.031 mmol/L increase in FBG for the participants being female, living in urban/rural regions, and having diabetes, respectively (all P < 0.05). Conclusion There are positively linear associations of changes in WC and BMI with the variation of FBG among middle aged and elderly populations with high cardiovascular risk. -
Key words:
- cardiovascular disease /
- waist circumference /
- body mass index /
- blood glucose level
-
表 1 不同腰围分级心血管病高危人群基线特征比较
Table 1. Main baseline characteristics by normal waist, pre-central obesity and obesity among 9 952 middle aged and elderly residents at high cardiovascular risk surveyed in Jiangsu province, 2015
特征 正常腰围(n = 3045) 中心性肥胖前期(n = 2130) 中心性肥胖(n = 4777) χ2 值 P 值 人数 % 人数 % 人数 % 性别 男性 1279 32.0 808 20.2 1 908 47.8 8.791 0.012 女性 1766 29.6 1322 22.2 2869 48.2 年龄(岁) 35~44 256 41.0 132 21.1 237 37.9 55.559 < 0.001 45~54 813 31.2 591 22.7 1202 46.1 55~64 1060 28.2 776 20.6 1 924 51.2 ≥ 65 916 30.9 631 21.3 1414 47.8 文化程度 小学及以下 1603 29.5 1166 21.4 2671 49.1 27.485 < 0.001 初中 836 30.7 571 21.0 1316 48.3 高中/中专 372 31.7 270 23.0 530 45.2 大专及以上 205 39.4 104 20.0 211 40.6 居住地 城市 1414 25.5 1282 23.1 2844 51.3 151.724 < 0.001 农村 1631 37.0 848 19.2 1 933 43.8 吸烟情况 不吸烟 2354 29.8 1716 21.7 3834 48.5 12.082 0.002 吸烟 691 33.7 414 20.2 943 46.0 饮酒情况 不饮酒 2472 30.3 1756 21.5 3937 48.2 2.211 0.331 饮酒 573 32.1 374 20.9 840 47.0 是否高血压 否 835 45.7 400 21.9 591 32.4 281.497 < 0.001 是 2210 27.2 1730 21.3 4186 51.5 是否糖尿病 否 2432 33.5 1561 21.5 3268 45.0 123.888 < 0.001 是 613 22.8 569 21.1 1509 56.1 是否血脂异常 否 1 926 34.0 1260 22.2 2486 43.8 143.628 < 0.001 是 959 24.0 825 20.7 2208 55.3 表 2 不同体质指数分级心血管病高危人群基线特征比较
Table 2. Main baseline characteristics by underweight, normal weight, overweight, and obesity among 9 952 middle aged and elderly residents at high cardiovascular risk surveyed in Jiangsu province, 2015
特征 体重过轻(n = 56) 正常体重(n = 2669) 超重(n = 4540) 肥胖(n = 2687) χ2 值 P 值 人数 % 人数 % 人数 % 人数 % 性别 男性 14 0.4 1014 25.4 1 904 47.7 1063 26.6 16.954 0.001 女性 42 0.7 1655 27.8 2636 44.3 1624 27.3 年龄(岁) 35~44 6 1.0 209 33.4 254 40.6 156 25.0 31.902 < 0.001 45~54 9 0.3 672 25.8 1187 45.5 738 28.3 55~64 22 0.6 950 25.3 1744 46.4 1044 27.8 ≥ 65 19 0.6 838 28.3 1355 45.8 749 25.3 文化程度 小学及以下 35 0.6 1455 26.7 2442 44.9 1508 27.7 28.223 0.001 初中 11 0.4 705 25.9 1238 45.5 769 28.2 高中/中专 6 0.5 320 27.3 577 49.2 269 23.0 大专及以上 3 0.6 169 32.5 235 45.2 113 21.7 居住地 城市 17 0.3 1347 24.3 2592 46.8 1584 28.6 59.241 < 0.001 农村 39 0.9 1322 30.0 1 948 44.2 1103 25.0 吸烟情况 不吸烟 44 0.6 2086 26.4 3603 45.6 2171 27.5 5.756 0.124 吸烟 12 0.6 583 28.5 937 45.8 516 25.2 饮酒情况 不饮酒 49 0.6 2187 26.8 3716 45.5 2213 27.1 1.448 0.694 饮酒 7 0.4 482 27.0 824 46.1 474 26.5 是否高血压 否 24 1.3 757 41.5 779 42.7 266 14.6 333.434 < 0.001 是 32 0.4 1 912 23.5 3761 46.3 2421 29.8 是否糖尿病 否 49 0.7 2091 28.8 3314 45.6 1 807 24.9 89.631 < 0.001 是 7 0.3 578 21.5 1226 45.6 880 32.7 是否血脂异常 否 35 0.6 1751 30.9 2554 45.0 1332 23.5 202.516 < 0.001 是 15 0.4 767 19.2 1 901 47.6 1309 32.8 表 3 心血管病高危人群腰围和体质指数变化与空腹血糖水平变化的关系
Table 3. Estimated gender-, residence place-, and diabetes-specific changes in fasting blood glucose associated with variations of waist circumference and body mass index: generalized estimating equation analysis on the data on 9 952 middle aged and elderly residents at high cardiovascular risk followed-up during 2015 - 2019 in Jiangsu province
分组 腰围变化 体质指数变化 β 95%CI P 值 β 95%CI P 值 性别 a 男性 0.011 0.006~0.016 < 0.001 0.019 – 0.002~0.041 0.069 女性 0.010 0.006~0.014 < 0.001 0.030 0.013~0.047 0.001 居住地 b 城市 0.014 0.011~0.018 < 0.001 0.026 0.009~0.043 0.003 农村 0.005 0.000~0.010 0.038 0.024 0.002~0.046 0.036 是否糖尿病 c 否 0.007 0.005~0.009 < 0.001 0.031 0.021~0.041 < 0.001 是 0.021 0.011~0.030 < 0.001 0.016 – 0.025~0.058 0.442 注:a 调整了年龄、文化程度、居住地、吸烟情况、饮酒情况、是否高血压、是否糖尿病、是否血脂异常、基线腰围、基线体质指数和随访次序等混杂因素;b 调整了性别、年龄、文化程度、吸烟情况、饮酒情况、是否高血压、是否糖尿病、是否血脂异常、基线腰围、基线体质指数和随访次序等混杂因素;c 调整了性别、年龄、文化程度、居住地、吸烟情况、饮酒情况、是否高血压、是否血脂异常、基线腰围、基线体质指数和随访次序等混杂因素。 -
[1] 《中国成人超重和肥胖预防控制指南》修订委员会. 中国成人超重和肥胖预防控制指南2021[M]. 北京: 人民卫生出版社, 2021. [2] Jayedi A, Soltani S, Motlagh SZT, et al. Anthropometric and adiposity indicators and risk of type 2 diabetes: systematic review and dose-response meta-analysis of cohort studies[J]. BMJ, 2022, 376: e067516. [3] Fan YX, Wang RD, Ding L, et al. Waist circumference and its changes are more strongly associated with the risk of type 2 diabetes than body mass index and changes in body weight in Chinese adults[J]. The Journal of Nutrition, 2020, 150(5): 1259 – 1265. doi: 10.1093/jn/nxaa014 [4] Fu WN, Wang C, Zou L, et al. Association of adiposity with diabetes: a national research among Chinese adults[J]. Diabetes/Metabolism Research and Reviews, 2021, 37(5): e3380. [5] Liu XC, Liu YS, Guan HX, et al. Comparison of six anthropometric measures in discriminating diabetes: a cross-sectional study from the national health and nutrition examination survey[J]. Journal of Diabetes, 2022, 14(7): 465 – 475. doi: 10.1111/1753-0407.13295 [6] Yang QY, Liu YL, Jin ZF, et al. Evaluation of anthropometric indices as a predictor of diabetes in Dong and Miao ethnicities in China: a cross-sectional analysis of China Multi-Ethnic Cohort study[J]. PLoS One, 2022, 17(3): e0265228. doi: 10.1371/journal.pone.0265228 [7] Jeon J, Jung KJ, Jee SH. Waist circumference trajectories and risk of type 2 diabetes mellitus in Korean population: the Korean genome and epidemiology study (KoGES)[J]. BMC Public Health, 2019, 19(1): 741. doi: 10.1186/s12889-019-7077-6 [8] 吴洵, 覃玉, 崔岚, 等. 江苏省居民心血管病高危人群流行病学特征及其影响因素分析[J]. 中华流行病学杂志, 2022, 43(1): 78 – 84. doi: 10.3760/cma.j.cn112338-20210201-00083 [9] 国家卫生健康委员会疾病预防控制局, 国家心血管病中心, 中国医学科学院阜外医院, 等. 中国高血压健康管理规范(2019)[J]. 中华心血管病杂志, 2020, 48(1): 10 – 46. doi: 10.3760/cma.j.issn.0253-3758.2020.01.004 [10] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华内分泌代谢杂志, 2021, 37(4): 311 – 398. doi: 10.3760/cma.j.cn311282-20210304-00142 [11] 中国成人血脂异常防治指南修订联合委员会. 中国成人血脂异常防治指南(2016年修订版)[J]. 中国循环杂志, 2016, 31(10): 937 – 950. doi: 10.3969/j.issn.1000-3614.2016.10.001 [12] Haase CL, Lopes S, Olsen AH, et al. Weight loss and risk reduction of obesity-related outcomes in 0.5 million people: evidence from a UK primary care database[J]. International Journal of Obesity, 2021, 45(6): 1249 – 1258. doi: 10.1038/s41366-021-00788-4 [13] Modi A, Gadhavi R, Pérez CM, et al. Longitudinal association between adiposity measures and regression of prediabetes/diabetes[J]. Nutrition, Metabolism, and Cardiovascular Diseases, 2021, 31(11): 3085 – 3094. doi: 10.1016/j.numecd.2021.07.005 [14] Hu H, Kawasaki Y, Kuwahara K, et al. Trajectories of body mass index and waist circumference before the onset of diabetes among people with prediabetes[J]. Clinical Nutrition, 2020, 39(9): 2881 – 2888. doi: 10.1016/j.clnu.2019.12.023 [15] Hou XH, Chen SY, Hu G, et al. Stronger associations of waist circumference and waist-to-height ratio with diabetes than BMI in Chinese adults[J]. Diabetes Research and Clinical Practice, 2019, 147: 9 – 18. doi: 10.1016/j.diabres.2018.07.029 [16] German CA, Laughey B, Bertoni AG, et al. Associations between BMI, waist circumference, central obesity and outcomes in type II diabetes mellitus: The ACCORD Trial[J]. Journal of Diabetes and Its Complications, 2020, 34(3): 107499. doi: 10.1016/j.jdiacomp.2019.107499 [17] Wang YL, Shirore RM, Ramakrishnan C, et al. Adiposity measures and pre-diabetes or diabetes in adults with hypertension in Singapore polyclinics[J]. The Journal of Clinical Hypertension, 2019, 21(7): 953 – 962. doi: 10.1111/jch.13587 [18] Sekgala MD, Sewpaul R, Opperman M, et al. Comparison of the ability of anthropometric indices to predict the risk of diabetes mellitus in south African males: SANHANES-1[J]. International Journal of Environmental Research and Public Health, 2022, 19(6): 3224. doi: 10.3390/ijerph19063224 [19] 邓晓庆, 张梅, 张笑, 等. 中国成年人血糖水平现状及其与体质指数和腰围的关系[J]. 中华流行病学杂志, 2022, 43(8): 1178 – 1188. doi: 10.3760/cma.j.cn112338-20211011-00782 [20] Bai KZ, Chen XJ, Song R, et al. Association of body mass index and waist circumference with type 2 diabetes mellitus in older adults: a cross-sectional study[J]. BMC Geriatrics, 2022, 22(1): 489. doi: 10.1186/s12877-022-03145-w [21] Ni XF, Jiao L, Zhang Y, et al. Correlation between the distribution of abdominal, pericardial and subcutaneous fat and muscle and age and gender in a middle-aged and elderly population[J]. Diabetes, Metabolic Syndrome and Obesity, 2021, 14: 2201 – 2208. doi: 10.2147/DMSO.S299171 [22] Malone JI, Hansen BC. Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite?[J]. Pediatric Diabetes, 2019, 20(1): 5 – 9. doi: 10.1111/pedi.12787 [23] Wei JX, Liu X, Xue H, et al. Comparisons of visceral adiposity index, body shape index, body mass index and waist circumference and their associations with diabetes mellitus in adults[J]. Nutrients, 2019, 11(7): 1580. doi: 10.3390/nu11071580 [24] 高星星, 王丽敏, 张笑, 等. 2018年中国成年居民体重和腰围知晓状况及影响因素分析[J]. 中华流行病学杂志, 2022, 43(8): 1205 – 1214. -

计量
- 文章访问数: 189
- HTML全文浏览量: 26
- PDF下载量: 69
- 被引次数: 0