高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西藏亚东县西藏血蜱携带微生物群落情况及主要病原体进化分析

孙世伟 多吉欧珠 李瑞山 张文凯 贺真 陆振华 邵中军

孙世伟, 多吉欧珠, 李瑞山, 张文凯, 贺真, 陆振华, 邵中军. 西藏亚东县西藏血蜱携带微生物群落情况及主要病原体进化分析[J]. 中国公共卫生, 2023, 39(11): 1490-1495. doi: 10.11847/zgggws1141835
引用本文: 孙世伟, 多吉欧珠, 李瑞山, 张文凯, 贺真, 陆振华, 邵中军. 西藏亚东县西藏血蜱携带微生物群落情况及主要病原体进化分析[J]. 中国公共卫生, 2023, 39(11): 1490-1495. doi: 10.11847/zgggws1141835
SUN Shiwei, Duojiouzhu, LI Ruishan, ZHANG Wenkai, HE Zhen, LU Zhenhua, SHAO Zhongjun. Microbial community and genetic homology of Anaplasma harbored by Haemaphysalis tibetensis collected in Yadong county, Tibet Autonomous Region[J]. Chinese Journal of Public Health, 2023, 39(11): 1490-1495. doi: 10.11847/zgggws1141835
Citation: SUN Shiwei, Duojiouzhu, LI Ruishan, ZHANG Wenkai, HE Zhen, LU Zhenhua, SHAO Zhongjun. Microbial community and genetic homology of Anaplasma harbored by Haemaphysalis tibetensis collected in Yadong county, Tibet Autonomous Region[J]. Chinese Journal of Public Health, 2023, 39(11): 1490-1495. doi: 10.11847/zgggws1141835

西藏亚东县西藏血蜱携带微生物群落情况及主要病原体进化分析

doi: 10.11847/zgggws1141835
详细信息
    作者简介:

    孙世伟(1992 – ),硕士在读,研究方向:传染病流行病学

    通信作者:

    邵中军,E-mail:13759981783@163.com

Microbial community and genetic homology of Anaplasma harbored by Haemaphysalis tibetensis collected in Yadong county, Tibet Autonomous Region

More Information
  • 摘要:   目的   了解西藏自治区亚东县西藏血蜱携带微生物群落的情况及主要病原体无形体的分型。  方法   2022年5月在亚东县采集寄生于牦牛身上的蜱虫样本141只。根据硬蜱线粒体16S rDNA 基因扩增序列进行分子鉴定以确定蜱种。采用Illumina Novaseq 6000平台对西藏血蜱进行高通量测序,将测序得到的原始数据处理后对其进行组装、基因预测、丰度分析和分类学预测。利用巢式PCR扩增无形体的16S rDNA基因片段并测序及进行序列的遗传进化分析。  结果   121只成蜱样本鉴定为西藏血蜱。非冗余数据集经NCBI-NR数据库比对进行物种注释后,最常见的微生物种类是真核生物(19.78%)和细菌(13.54%)。在细菌中,优势门分别是变形杆菌门、拟杆菌门和厚壁菌门;优势属分别是无形体属、锥虫属、冷杆菌属和立克次体属;优势种分别是嗜吞噬细胞无形体、泰勒虫和斑点热群立克次体。无形体的系统发育树与绵羊无形体遗传距离最近,具有较高的同源性。  结论   西藏自治区亚东县地区优势蜱种为西藏血蜱。无形体的主要分型为绵羊无形体。当地人畜暴露在多种蜱传病原体中,存在潜在蜱传疾病的威胁,应针对性加强对蜱的监测和预防控制工作。
  • 图  1  基于蜱虫16S rDNA构建的系统进化树

    注:亚东_16S_1和亚东_16S_2为西藏亚东县采集的成蜱样本。

    Figure  1.  Phylogenetic tree constructed based on mitochondrial 16S rDNA of Ixodes

    图  2  使用Krona对物种注释结果可视化

    注:圆圈从内到外依次代表不同的分类级别(界门纲目科属种);扇形的大小代表不同物种的相对比例。

    Figure  2.  Display of species annotation outcomes using Krona for microbial community harbored by Haemaphysalis tibetensis collected in Yadong county, Tibet Autonomous Region

    图  3  在属水平和种水平上的物种丰度

    Figure  3.  The abundance of species at both genus and species levels for microbial community harbored by Haemaphysalis tibetensis collected in Yadong county, Tibet Autonomous Region

    图  4  基于无形体16S rDNA构建的系统进化树

    Figure  4.  Phylogenetic tree constructed based on 16S rDNA of Anaplasma

  • [1] de la Fuente J. Controlling ticks and tick-borne diseases…look-ing forward[J]. Ticks and Tick-Borne Diseases, 2018, 9(5): 1354 – 1357. doi: 10.1016/j.ttbdis.2018.04.001
    [2] Carmichael JR, Fuerst PA. A rickettsial mixed infection in a Dermacentor variabilis tick from Ohio[J]. Annals of the New York Academy of Sciences, 2006, 1078(1): 334 – 337. doi: 10.1196/annals.1374.064
    [3] 邵中军. 我国重要蜱传疾病及传播媒介研究概述[J]. 中华卫生杀虫药械, 2021, 27(4): 293 – 299.
    [4] Madison-Antenucci S, Kramer LD, Gebhardt LL, et al. Emerging tick-borne diseases[J]. Clinical Microbiology Reviews, 2020, 33(2): e00083 – 18.
    [5] Jia N, Wang JF, Shi WQ, et al. Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities[J]. Cell, 2020, 182(5): 1328 – 1340.e13. doi: 10.1016/j.cell.2020.07.023
    [6] Yu ZJ, Wang RR, Li NX, et al. Microbial diversity of the Tibetan tick Haemaphysalis tibetensis (Acari: Ixodidae)[J]. Experimental and Applied Acarology, 2017, 73(2): 237 – 244. doi: 10.1007/s10493-017-0179-x
    [7] Liu M, Li T, Yu ZJ, et al. Characterization of the life cycle of the tick Haemaphysalis tibetensis under field conditions in Qinghai-Tibet plateau[J]. Experimental and Applied Acarology, 2016, 69(1): 107 – 115. doi: 10.1007/s10493-016-0020-y
    [8] Khoo JJ, Chen F, Kho KL, et al. Bacterial community in Haemaphysalis ticks of domesticated animals from the orang asli communities in Malaysia[J]. Ticks and Tick-Borne Diseases, 2016, 7(5): 929 – 937. doi: 10.1016/j.ttbdis.2016.04.013
    [9] 叶向光. 常见医学蜱螨图谱[M]. 北京: 科学出版社, 2020.
    [10] Chen Z, Li YQ, Ren QY, et al. Dermacentor everestianus Hirst, 1926 (Acari: Ixodidae): phylogenetic status inferred from molecular characteristics[J]. Parasitology Research, 2014, 113(10): 3773 – 3779. doi: 10.1007/s00436-014-4043-1
    [11] Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547 – 1549. doi: 10.1093/molbev/msy096
    [12] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406 – 425.
    [13] Sunagawa S, Coelho LP, Chaffron S, et al. Structure and function of the global ocean microbiome[J]. Science, 2015, 348(6237): e1261359. doi: 10.1126/science.1261359
    [14] Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer[J]. Molecular Systems Biology, 2014, 10(11): 766. doi: 10.15252/msb.20145645
    [15] Qin N, Yang FL, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis[J]. Nature, 2014, 513(7516): 59 – 64. doi: 10.1038/nature13568
    [16] Li JH, Jia HJ, Cai XH, et al. An integrated catalog of reference genes in the human gut microbiome[J]. Nature Biotechnology, 2014, 32(8): 834 – 841. doi: 10.1038/nbt.2942
    [17] Fu LM, Niu BF, Zhu ZW, et al. CD-HIT: accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23): 3150 – 3152. doi: 10.1093/bioinformatics/bts565
    [18] Li WZ, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 2006, 22(13): 1658 – 1659. doi: 10.1093/bioinformatics/btl158
    [19] Oh J, Byrd AL, Deming C, et al. Biogeography and individuality shape function in the human skin metagenome[J]. Nature, 2014, 514(7520): 59 – 64. doi: 10.1038/nature13786
    [20] Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1): 59 – 60. doi: 10.1038/nmeth.3176
    [21] 李静, 唐文强, 石斌, 等. 西藏部分地区血蜱、革蜱形态和分子生物学鉴定[J]. 黑龙江畜牧兽医, 2022, (4): 82 – 86 + 89 + 137 – 138.
    [22] Kong YY, Zhang G, Jiang LL, et al. Metatranscriptomics reveals the diversity of the tick virome in Northwest China[J]. Microbiology Spectrum, 2022, 10(5): e0111522. doi: 10.1128/spectrum.01115-22
    [23] Narasimhan S, Fikrig E. Tick microbiome: the force within[J]. Trends in Parasitology, 2015, 31(7): 315 – 323. doi: 10.1016/j.pt.2015.03.010
    [24] Andreotti R, Pérez De León AA, Doed SE, et al. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing[J]. BMC Microbi-ology, 2011, 11(1): 6. doi: 10.1186/1471-2180-11-6
    [25] Jasinskas A, Zhong JM, Barbour AG. Highly prevalent Coxiella sp. bacterium in the tick vector Amblyomma americanum[J]. Applied and Environmental Microbiology, 2007, 73(1): 334 – 336. doi: 10.1128/AEM.02009-06
    [26] Wang RR, Li NX, Liu JN, et al. Symbiont dynamics of the Tibetan tick Haemaphysalis tibetensis (Acari: Ixodidae)[J]. Parasites and Vectors, 2017, 10(1): 259. doi: 10.1186/s13071-017-2199-0
  • 加载中
图(4)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  79
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 接收日期:  2023-03-27
  • 录用日期:  2023-10-08
  • 修回日期:  2023-06-20
  • 网络出版日期:  2023-11-28
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回