高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2022年12月Omicron变异株流行期间天水市本土病例新冠病毒全基因组测序分析

杨雯静 张永斌 赵婧伊 马星宇

杨雯静, 张永斌, 赵婧伊, 马星宇. 2022年12月Omicron变异株流行期间天水市本土病例新冠病毒全基因组测序分析[J]. 中国公共卫生, 2023, 39(8): 1061-1066. doi: 10.11847/zgggws1141890
引用本文: 杨雯静, 张永斌, 赵婧伊, 马星宇. 2022年12月Omicron变异株流行期间天水市本土病例新冠病毒全基因组测序分析[J]. 中国公共卫生, 2023, 39(8): 1061-1066. doi: 10.11847/zgggws1141890
YANG Wenjing, ZHANG Yongbin, ZHAO Jingyi, MA Xingyu. Whole genome sequencing on SARS-CoV-2 strains isolated among local COVID-19 patients during an Omicron epidemic in Tianshui city[J]. Chinese Journal of Public Health, 2023, 39(8): 1061-1066. doi: 10.11847/zgggws1141890
Citation: YANG Wenjing, ZHANG Yongbin, ZHAO Jingyi, MA Xingyu. Whole genome sequencing on SARS-CoV-2 strains isolated among local COVID-19 patients during an Omicron epidemic in Tianshui city[J]. Chinese Journal of Public Health, 2023, 39(8): 1061-1066. doi: 10.11847/zgggws1141890

2022年12月Omicron变异株流行期间天水市本土病例新冠病毒全基因组测序分析

doi: 10.11847/zgggws1141890
详细信息
    作者简介:

    杨雯静(1981 – ),副主任医师,硕士,研究方向:传染病监测和病原微生物检测

    通信作者:

    张永斌,E-mail:zyb0938@126.com

Whole genome sequencing on SARS-CoV-2 strains isolated among local COVID-19 patients during an Omicron epidemic in Tianshui city

More Information
  • 摘要:   目的  分析新冠病毒(SARS-CoV-2)奥密克戎(Omicron)变异株流行期间甘肃省天水市本土SARS-CoV-2基因组特征和变异情况,为疫情防控提供参考依据。  方法  收集2022年12月甘肃省天水市新冠病毒感染(COVID-19)重症病例咽拭子样本共136份,采用突变核酸检测试剂盒进行变异株核酸检测,采用二代测序技术进行全基因组测序,Pangolin和Nextclade平台判定病毒谱系及型别,MAFFT软件进行多重序列比对,使用MEGA软件基于邻接法构建系统进化树。  结果  共获得32条SARS-CoV-2全基因组序列,Pangolin分型31条为 Omicron变异株BA.5.2进化分支,1条为Omicron变异株BF.7进化分支;共有68个核苷酸位点和32个氨基酸位点发生突变。S蛋白的受体结合域(RBD)关键位点存在S494P和A522S变异。  结论  Omicron变异株的编码区突变位点多,编码区的多变异性影响病毒的致病性、传染力和免疫逃逸水平。
  • 图  1  天水市32份重型新冠病例咽拭子样本SARS-CoV-2序列与武汉参考株(NC_045512.2)核苷酸与氨基酸序列比对

    注:Nt:核苷酸;AA:氨基酸;ORF:开放阅读框;S:刺突;E:包膜;M:膜;N:核衣壳;非同义突变(红色字体标注的氨基酸简称);L型欧洲家系(标注);L型欧洲家系分支I(标注)

    Figure  1.  Nucleotide and amino acid sequence alignment of SARS-CoV-2 strains isolated from pharyngeal swab samples of 32 severe COVID-19 patients in Tianshui city of Gansu province, December 2022- compared with Wuhan reference strain (NC_045512.2)

    图  2  天水市32份重型新冠病例咽拭子样本SARS-CoV-2全基因组系统进化树

    注:红色字体部分为本研究中本土病例基因序列

    Figure  2.  Genome-wide phylogenetic tree of SARS-CoV-2 strains isolated from pharyngeal swab samples of 32 severe COVID-19 patients in Tianshui city of Gansu province, December 2022

    表  1  2022年12月天水市32份重型新冠病例咽拭子样本SARS-CoV-2全基因组序列测序分析

    Table  1.   Whole genome sequencing on SARS-CoV-2 strains isolated from pharyngeal swab samples of 32 severe COVID-19 patients in Tianshui city of Gansu province, December 2022

    序列名称平均测序深度覆盖度(%Nextstrain 分型Pangolin分型新增核苷酸突变位点数核苷酸同源性(%
    TS20230112-0112977.8999.5022B OmicronBA.5.2399.52
    TS20230112-0213222.2399.5322B OmicronBA.5.2099.53
    TS20230112-034227.1199.5322B OmicronBA.5.2299.52
    TS20230112-049364.7799.5322B OmicronBA.5.2199.53
    TS20230112-0512793.1999.5322B OmicronBA.5.2399.53
    TS20230112-0611526.7299.5322B OmicronBA.5.2399.52
    TS20230112-0711558.9299.5322B OmicronBF.712 99.54
    TS20230112-089260.6499.5322B OmicronBA.5.2199.53
    TS20230112-098148.9199.5022B OmicronBA.5.2299.52
    TS20230112-1012636.9499.5322B OmicronBA.5.2899.53
    TS20230112-114066.3899.5122B OmicronBA.5.2199.53
    TS20230112-125345.3788.3522B OmicronBA.5.2199.61
    TS20230112-138337.3297.6322B OmicronBA.5.2899.52
    TS20230112-145030.4899.1822B OmicronBA.5.2199.53
    TS20230112-159274.2199.0322B OmicronBA.5.2099.62
    TS20230112-168228.3498.3922B OmicronBA.5.2899.62
    TS20230116-0127567.2298.8322B OmicronBA.5.2199.53
    TS20230116-027156.6099.5322B OmicronBA.5.2199.53
    TS20230116-039083.8699.5322B OmicronBA.5.2199.53
    TS20230116-0416722.4799.5822B OmicronBA.5.2199.61
    TS20230116-0517067.8199.5322B OmicronBA.5.2199.53
    TS20230116-0617256.9899.5922B OmicronBA.5.2499.52
    TS20230116-078577.0199.5322B OmicronBA.5.2099.53
    TS20230116-0810457.4799.5322B OmicronBA.5.2499.54
    TS20230116-0925176.4799.5322B OmicronBA.5.2199.53
    TS20230116-1011234.0499.5322B OmicronBA.5.2399.52
    TS20230116-1116369.2599.5322B OmicronBA.5.2199.53
    TS20230116-128973.0499.5922B OmicronBA.5.2199.56
    TS20230116-1313082.6799.3622B OmicronBA.5.2299.52
    TS20230116-148069.6799.5322B OmicronBA.5.2399.52
    TS20230116-1513029.4399.5322B OmicronBA.5.2599.51
    TS20230116-1616296.3699.7522B OmicronBA.5.2499.52
    下载: 导出CSV
  • [1] 袁伦志, 张天英, 张军, 等. 面向新冠肺炎疫情防控需求的应用基础研究[J]. 中国科学基金, 2022, 36(4): 615 – 623.
    [2] 李东升, 吴忠兰, 张愫, 等. 新型冠状病毒的演化和新冠病毒疫苗的免疫保护研究进展[J]. 药学进展, 2022, 46(10): 736 – 744.
    [3] 曹志强, 卢莉, 张卫, 等. 新型冠状病毒疫苗对奥密克戎变异株免疫保护效果研究进展[J]. 中国公共卫生, 2022, 38(9): 1224 – 1228.
    [4] Singh A, Steinkellner G, Köchl K, et al. Serine 477 plays a crucial role in the interaction of the SARS - CoV - 2 spike protein with the human receptor ACE2[J]. Scientific Reports, 2021, 11(1): 4320. doi: 10.1038/s41598-021-83761-5
    [5] Tian XL, Song Y, Nie K, et al. The two reemergent confirmed COVID - 19 cases – Manzhouli City, Inner Mongolia Autonomous Region, China, November 20, 2020[J]. China CDC Weekly, 2020, 2(51): 983 – 984. doi: 10.46234/ccdcw2020.258
    [6] Bakhshandeh B, Jahanafrooz Z, Abbasi A, et al. Mutations in SARS - CoV - 2; Consequences in structure, function, and pathogeni-city of the virus[J]. Microbial Pathogenesis, 2021, 154: 104831. doi: 10.1016/j.micpath.2021.104831
    [7] 中国科学院北京基因组研究所(国家生物信息中心)报告, Molecular epidemiology of the SARS-CoV-2 variant in China revealed a new Omicron BF.7 sub-lineage (proposed to be BF.7.14), October to December 2022, 国家基因组科学数据中心新冠病毒信息库网站, 2023年1月9日, https://ngdc.cncb.ac.cn/ncov/static/report/Situation_reports_20230109.pdf
    [8] Rahimi A, Mirzazadeh A, Tavakolpour S. Genetics and genomics of SARS-CoV-2: a review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection[J]. Genomics, 2021, 113(1 Pt 2): 1221 – 1232.
    [9] Weissman D, Alameh MG, De Silva T, et al. D614G spike mutation increases SARS - CoV - 2 susceptibility to neutralization[J]. Cell Host and Microbe, 2021, 29(1): 23 – 31.e4. doi: 10.1016/j.chom.2020.11.012
    [10] 刘赞赞, 解翠华, 江亚娟, 等. 新冠病毒奥密克戎变异株感染者咽拭子样本全基因组测序分析[J]. 中国公共卫生, 2023, 39(1): 113 – 116.
    [11] Cao YL, Jian FC, Wang J. Imprinted SARS - CoV - 2 humoral immunity induces convergent Omicron RBD evolution[J]. Nature, 2023, 614(7948): 521 – 529.
    [12] Cao YL, Yisimayi A, Jian FC, et al. BA. 2.12. 1, BA. 4 and BA. 5 escape antibodies elicited by Omicron infection[J]. Nature, 2022, 608(7923): 593 – 602. doi: 10.1038/s41586-022-04980-y
    [13] Cao YL, Wang J, Jian FC, et al. Omicron escapes the majority of existing SARS - CoV - 2 neutralizing antibodies[J]. Nature, 2022, 602(7898): 657 – 663. doi: 10.1038/s41586-021-04385-3
    [14] Chakraborty S. Evolutionary and structural analysis elucidates mutations on SARS - CoV - 2 spike protein with altered human ACE2 binding affinity[J]. Biochemical and Biophysical Research Communications, 2021, 534: 374 – 380. doi: 10.1016/j.bbrc.2020.11.075
    [15] Naresh GKRS, Guruprasad L. Mutations in the receptor - binding domain of human SARS - CoV - 2 spike protein increases its affinity to bind human ACE - 2 receptor[J]. Journal of Biomolecular Structure and Dynamics, 2023, 41(6): 2368 – 2381. doi: 10.1080/07391102.2022.2032354
    [16] Thomson EC, Rosen LE, Shepherd JG, et al. Circulating SARS - CoV - 2 spike N439K variants maintain fitness while evading antibody - mediated immunity[J]. Cell, 2021, 184(5): 1171 – 1187.e20. doi: 10.1016/j.cell.2021.01.037
    [17] Wang R, Chen JH, Gao KF, et al. Vaccine-escape and fast-growing mutations in the United Kingdom, the United States, Singapore, Spain, India, and other COVID-19-devastated countries[J]. Genomics, 2021, 113(4): 2158 – 2170. doi: 10.1016/j.ygeno.2021.05.006
    [18] Singh PK, Kulsum U, Rufai SB, et al. Mutations in SARS - CoV - 2 leading to antigenic variations in spike protein: a challenge in vaccine development[J]. Journal of Laboratory Physicians, 2020, 12(2): 154 – 160. doi: 10.1055/s-0040-1715790
    [19] Garcia-Beltran WF, Lam EC, St. Denis DK, et al. Multiple SARS - CoV - 2 variants escape neutralization by vaccine-induced humoral immunity[J]. Cell, 2021, 184(9): 2372 – 2383.e9. doi: 10.1016/j.cell.2021.03.013
    [20] Martinot M, Jary A, Fafi-Kremer S, et al. Emerging RNA - dependent RNA polymerase mutation in a remdesivir - treated B - cell immunodeficient patient with protracted coronavirus disease 2019[J]. Clinical Infectious Diseases, 2021, 73(7): e1762 – e1765. doi: 10.1093/cid/ciaa1474
    [21] Wu YX, Ma L, Cai SH, et al. RNA - induced liquid phase separation of SARS - CoV - 2 nucleocapsid protein facilitates NF - κB hyper - activation and inflammation[J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 167. doi: 10.1038/s41392-021-00575-7
    [22] Pan P, Shen MM, Yu ZY, et al. SARS - CoV - 2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation[J]. Nature Communications, 2021, 12(1): 4664. doi: 10.1038/s41467-021-25015-6
    [23] Cascarina SM, Ross ED. Phase separation by the SARS - CoV - 2 nucleocapsid protein: consensus and open questions[J]. Journal of Biological Chemistry, 2022, 298(3): 101677. doi: 10.1016/j.jbc.2022.101677
    [24] 孔令启, 丁一, 屈艳琳. 新冠病毒N基因编码蛋白的生物信息学分析[J]. 中国病原生物学杂志, 2022, 17(7): 745 – 750,756.
    [25] Gurung AB. In silico structure modelling of SARS - CoV - 2 Nsp13 helicase and Nsp14 and repurposing of FDA approved antiviral drugs as dual inhibitors[J]. Gene Reports, 2020, 21: 100860. doi: 10.1016/j.genrep.2020.100860
    [26] De Marco C, Marascio N, Veneziano C. Whole - genome analysis of SARS - CoV - 2 in a 2020 infection cluster in a nursing home of Southern Italy[J]. Infection, Genetics and Evolution, 2022, 99: 105253. doi: 10.1016/j.meegid.2022.105253
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  39
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 接收日期:  2023-03-29
  • 录用日期:  2023-07-05
  • 修回日期:  2023-05-05
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2023-08-10

目录

    /

    返回文章
    返回