高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型冠状病毒感染疫情前及流行期苏州地区 ≤ 14岁住院儿童5种下呼吸道常见病原体感染情况分析

陆颖枫 田健美 张涛 薛建 邵雪君 赵根明

陆颖枫, 田健美, 张涛, 薛建, 邵雪君, 赵根明. 新型冠状病毒感染疫情前及流行期苏州地区 ≤ 14岁住院儿童5种下呼吸道常见病原体感染情况分析[J]. 中国公共卫生. doi: 10.11847/zgggws1142313
引用本文: 陆颖枫, 田健美, 张涛, 薛建, 邵雪君, 赵根明. 新型冠状病毒感染疫情前及流行期苏州地区 ≤ 14岁住院儿童5种下呼吸道常见病原体感染情况分析[J]. 中国公共卫生. doi: 10.11847/zgggws1142313
LU Yingfeng, TIAN Jianmei, ZHANG Tao, XUE Jian, SHAO Xuejun, ZHAO Genming. Detection rate of five respiratory pathogens before and during COVID-19 pandemic among ALRI hospitalizations of children aged 0 – 14 years at a tertiary children's hospital in Suzhou city, 2018 – July 2022[J]. Chinese Journal of Public Health. doi: 10.11847/zgggws1142313
Citation: LU Yingfeng, TIAN Jianmei, ZHANG Tao, XUE Jian, SHAO Xuejun, ZHAO Genming. Detection rate of five respiratory pathogens before and during COVID-19 pandemic among ALRI hospitalizations of children aged 0 – 14 years at a tertiary children's hospital in Suzhou city, 2018 – July 2022[J]. Chinese Journal of Public Health. doi: 10.11847/zgggws1142313

新型冠状病毒感染疫情前及流行期苏州地区 ≤ 14岁住院儿童5种下呼吸道常见病原体感染情况分析

doi: 10.11847/zgggws1142313
基金项目: 上海市市级科技重大专项(ZD2021CY001);国家科技基础资源调查专项(2019FY101204);上海市公共卫生体系建设三年行动计划(2020 — 2022)重点学科建设(GWV – 10.1 – XK16);默沙东研究者发起项目(MISP61457)
详细信息
    作者简介:

    陆颖枫(1998 – ),硕士在读,研究方向:疾病预防控制

    通信作者:

    邵雪君,E-mail:xjshao@suda.edu.cn

    赵根明,E-mail:gmzhao@shmu.edu.cn

Detection rate of five respiratory pathogens before and during COVID-19 pandemic among ALRI hospitalizations of children aged 0 – 14 years at a tertiary children's hospital in Suzhou city, 2018 – July 2022

More Information
  • 摘要:   目的  探讨新型冠状病毒感染疫情前及流行期间苏州地区儿童常见呼吸道病原体的感染情况,为急性下呼吸道感染(ALRI)的预防及诊治提供参考。  方法   纳入2018年1月 — 2022年7月在苏州大学附属儿童医院呼吸科因急性下呼吸道感染住院的 ≤ 14岁患儿为研究对象,检测甲型流感病毒(FluA)、乙型流感病毒(FluB)、呼吸道合胞病毒(RSV)、肺炎链球菌(Spn)、流感嗜血杆菌(Hi)等病原体。比较新冠疫情大流行前(2018 — 2019年)与新冠疫情大流行期间(2020 — 2022年7月)5种常见呼吸道病原体不同时间阳性检出率。  结果   2018年1月 — 2022年7月共检测9005例患儿。与2018 — 2019年同期比较,FluA检出率在2020年(1.3%)、2021年(0.1%)、2022年(3.5%)明显降低(均P < 0.05);2020 — 2022年FluB检出率显著降低,分别为1.7%、1.0%、3.2%(均P < 0.05);2020年RSV检出率与疫情前相比差异无统计学意义(P > 0.05),但RSV检出率在2021年(20.8%)和2022年(18.9%)显著增高(均P < 0.05);Spn检出率在2020年(11.2%)和2022年(8.9%)明显降低(均P < 0.05),2021年Spn检出率差异无统计学意义(P > 0.05);Hi检出率在2020年(6.8%)、2021年(7.5%)、2022年(4.0%)明显降低(均P < 0.05)。新冠疫情前混合病原体感染主要为“Hi + Spn”、“Hi + Flu”,2020年主要混合感染类型为“Hi + Spn”、“Flu + Hi”及“RSV + Spn”。2021年、2022年,“RSV + Spn”混合感染最为常见。随着非药物干预措施的放松,RSV在2021年夏季出现了反季节的流行,2021年7 — 11月检出率分别为13.9%、9.2%、28.8%、43.5%、35.3%,显著高于疫情前平均水平(均P < 0.001);FluA在2022年夏季结束了持续2年的低流行趋势;FluB也于2021年11月逐渐恢复至流行前水平。不同病原体感染年龄分布存在差异,RSV感染多见于 < 1岁儿童,FluAFluB感染以 ≥ 1岁儿童为主,而Spn及Hi感染大多为 < 6岁儿童。  结论   新型冠状病毒感染疫情防控的非药物干预措施对5种常见呼吸道病原体的传播产生了一定的影响,但随着新冠疫情变化及防控措施的调整,部分呼吸道病原体感染出现不同程度的反弹,需持续进行病原体的监测。
  • 图  1  2018年 — 2022年7月5种常见病原体不同月份检出情况

    Figure  1.  Year-specific monthly detection rate of five respiratory pathogens among 9 005 children (0 – 14 years) hospitalized due to ALRI in a tertiary children's hospital of Suzhou city, 2018 – July 2022

    表  1  2018年1月 — 2022年7月住院患儿基本特征及病原检测情况

    Table  1.   Year-specific number, gender, age, and positivity of five respiratory pathogens among 9 005 children (0 – 14 years) hospitalized due to ALRI in a tertiary children′s hospital of Suzhou city, 2018 – July 2022

    变量2018年
    N = 3 011)
    2019年
    N = 2 605)
    2020年1,4 — 12月
    N = 997)
    2021年
    N = 1 710)
    2022年1 — 7月
    N = 682)
    合计
    N = 9 005)
    n%n%n%Pan%Pbn%Pcn%
    人口学信息
    性别
     男童1 87962.41 53959.158258.40.2531 00358.60.11142161.70.8275 42460.2
     女童1 13237.61 06640.941541.670741.426138.33 58139.8
    年龄组(岁)
     < 11 53350.91 08941.840640.70.01757733.7 < 0.00126238.4 < 0.0013 86742.9
     1~76825.564524.830030.10.00151930.4 < 0.00117125.10.9362 40326.7
     3~49016.352520.121721.80.05847027.5 < 0.00115022.00.0011 85220.6
     6~142207.334613.3747.40.0011448.40.0439914.5 < 0.0018839.8
    病原体检测
    病毒性病原检测阳性
     RSV38112.728110.8989.80.18035620.8 < 0.00112918.9 < 0.0011 24513.8
     FluA1364.527310.5131.3 < 0.00120.1 < 0.001243.5 < 0.0014485.0
     FluB481.61475.6171.70.013171.0 < 0.001223.20.0062512.8
    细菌性病原检测阳性
     Spn41313.736013.811211.20.02523613.80.969618.9 < 0.0011 18213.1
     Hi46115.340715.6686.80.0011287.5 < 0.001274.0 < 0.0011 09112.1
      注:a 比较2018 — 2019年1月、4 — 12月与2020年1月、4 — 12月;b 比较2018 — 2019年与2021年;c 比较2018 — 2019年1 — 7月与2022年1 — 7月。
    下载: 导出CSV

    表  2  2018年1月 — 2022年7月住院患儿病原体混合感染情况

    Table  2.   Year-specific number and ratio of dual/triple infection of five respiratory pathogens among 9 005 children (0 – 14 years) hospitalized due to ALRI in a tertiary children′s hospital of Suzhou city, 2018 – July 2022

    混合感染2018年(N = 3 011)2019年(N = 2 605)2020年(N = 997)2021年(N = 1 710)2022年1 — 7月(N = 682)
    n%n%n%n%n%
    二重感染
     RSV + Flu50.2220.830.320.120.3
     RSV + Spn230.8341.360.6523.0111.6
     RSV + Hi371.2160.650.5110.750.7
     Flu + Spn341.1501.950.510.160.9
     Flu + Hi341.1692.760.600.040.6
     Hi + Spn602.0542.190.9140.810.2
    三重感染
     RSV + Flu + Spn00.020.100.000.000.0
     RSV + Flu + Hi20.170.310.100.000.0
    合计1956.52549.8353.5804.7294.3
    下载: 导出CSV

    表  3  基于月份比较新冠疫情前及疫情期间RSV检出率(%)

    Table  3.   Year period-/year-specific monthly detection rate of respiratory syncytial virus among 9 005 children (0 – 14 years) hospitalized due to ALRI in a tertiary children′s hospital of Suzhou city, 2018 – July 2022

    月份2018 — 2019年2020年2021年2022年
    检测数阳性数%检测数阳性数%Pa检测数阳性数%Pb检测数阳性数%Pc
    1 639 141 22.1 132 44 33.3 0.004 186 49 26.3 0.223 166 72 43.4 < 0.001
    2 395 74 18.7 77 15 19.5 0.878 96 33 34.4 < 0.001
    3 596 67 11.2 104 12 11.2 0.930 113 18 15.9 0.160
    4 467 18 3.9 31 0 0.0 0.285 136 14 10.3 0.003 24 1 4.2 0.938
    5 532 7 1.3 141 0 0.0 0.171 157 1 0.6 0.784 59 0 0.0 1.000 d
    6 376 0 0.0 79 0 0.0 e 162 4 2.5 0.012 88 3 3.4 0.007 d
    7 399 1 0.3 42 0 0.0 1.000 d 166 23 13.9 < 0.001 136 2 1.5 0.161 d
    8 415 8 1.9 43 0 0.0 1.000 d 120 11 9.2 < 0.001
    9 403 21 5.2 79 0 0.0 0.034 d 125 36 28.8 < 0.001
    10 418 39 9.3 102 3 2.9 0.034 145 63 43.5 < 0.001
    11 501 98 19.6 171 11 6.4 < 0.001 156 55 35.3 < 0.001
    12 475 188 39.6 177 40 22.6 < 0.001 176 73 41.5 0.661
      注:“—”表示无数据;a 比较2018 — 2019年与2020年;b 比较2018 — 2019年与2021年;c 比较2018 — 2019年与2022年;d Fisher确切概率法;e 行或列总和为零,未计算统计量。
    下载: 导出CSV

    表  7  基于月份比较新冠疫情前及疫情期间Hi检出率(%)

    Table  7.   Year period-/year-specific monthly detection rate of Haemophilus influenzae among 9 005 children (0 – 14 years) hospitalized due to ALRI in a tertiary children′s hospital of Suzhou city, 2018 – July 2022

    月份2018 — 2019年2020年2021年2022年
    检测数阳性数%检测数阳性数%P a检测数阳性数%P b检测数阳性数%P c
    163910316.11321914.40.621186105.4 < 0.00116674.2 < 0.001
    23957218.277911.70.1649633.1 < 0.001
    359615325.710498.7 < 0.00111376.2 < 0.001
    446710322.13113.20.0131362619.10.4622400.00.010
    553214427.1141117.8 < 0.0011573019.10.0445935.1 < 0.001
    63765815.47933.80.0061621911.70.2618822.3 < 0.001
    73996015.04212.40.02416695.40.00213653.7 < 0.001
    84154611.14312.30.12412043.30.010
    9403389.47978.90.87412521.60.004
    10418235.510254.40.81014521.40.038
    11501357.017174.10.17715631.90.018
    12475337.0177137.30.86017652.80.047
      注:“—”表示无数据;a 比较2018 — 2019年与2020年;b 比较2018 — 2019年与2021年;c 比较2018 — 2019年与2022年。
    下载: 导出CSV

    表  4  基于月份比较新冠疫情前及疫情期间FluA检出率(%)

    Table  4.   Year period-/year-specific monthly detection rate of influenza virus A among 9 005 children (0 – 14 years) hospitalized due to ALRI in a tertiary children′s hospital of Suzhou city, 2018 – July 2022

    月份2018 — 2019年2020年2021年2022年
    检测数阳性数%检测数阳性数%P a检测数阳性数%P b检测数阳性数%P c
    1 639 173 27.1 132 13 9.9 < 0.001 186 0 0.0 < 0.001 166 0 0.0 < 0.001
    2 395 113 28.6 77 0 0.0 < 0.001 96 0 0.0 < 0.001
    3 596 73 12.3 104 0 0.0 < 0.001 113 0 0.0 < 0.001
    4 467 24 5.1 31 0 0.0 0.196 136 0 0.0 0.007 24 0 0.0 0.255
    5 532 3 0.6 141 0 0.0 1.000 d 157 0 0.0 1.000 d 59 0 0.0 1.000 d
    6 376 10 2.7 79 0 0.0 0.297 162 0 0.0 0.081 88 4 4.6 0.559
    7 399 0 0.0 42 0 0.0 e 166 0 0.0 e 136 20 14.7 < 0.001
    8 415 0 0.0 43 0 0.0 e 120 0 0.0 e
    9 403 0 0.0 79 0 0.0 e 125 2 1.6 0.056 d
    10 418 1 0.2 102 0 0.0 1.000 d 145 0 0.0 1.000 d
    11 501 1 0.2 171 0 0.0 1.000 d 156 0 0.0 1.000 d
    12 475 11 2.3 177 0 0.0 0.089 176 0 0.0 0.090
      注:“ — ”表示无数据;a 比较2018 — 2019年与2020年;b 比较2018 — 2019年与2021年;c 比较2018 — 2019年与2022年;d Fisher确切概率法;e 行或列总和为零,未计算统计量。
    下载: 导出CSV

    表  5  基于月份比较新冠疫情前及疫情期间FluB检出率(%)

    Table  5.   Year period-/year-specific monthly detection rate of influenza virus B among 9 005 children (0 – 14 years) hospitalized due to ALRI in a tertiary children′s hospital of Suzhou city, 2018 – July 2022

    月份2018 — 2019年2020年2021年2022年
    检测数阳性数%检测数阳性数%Pa检测数阳性数%Pb检测数阳性数%Pc
    1 639 37 5.8 132 17 12.9 0.004 186 2 1.1 0.008 166 14 8.4 0.213
    2 395 8 2.0 77 1 1.3 0.670 96 4 4.2 0.200
    3 596 40 6.7 104 1 1.0 0.021 113 4 3.5 0.354
    4 467 38 8.1 31 0 0.0 0.193 136 0 0.0 < 0.001 24 0 0.0 0.146
    5 532 34 6.4 141 0 0.0 0.002 157 0 0.0 0.001 59 0 0.0 0.088
    6 376 20 5.3 79 0 0.0 0.073 162 0 0.0 0.003 88 0 0.0 0.055
    7 399 7 1.8 42 0 0.0 1.000 d 166 0 0.0 0.194 136 0 0.0 0.264
    8 415 0 0.0 43 0 0.0 e 120 0 0.0 e
    9 403 0 0.0 79 0 0.0 e 125 2 1.6 0.056 d
    10 418 0 0.0 102 0 0.0 e 145 0 0.0 e
    11 501 0 0.0 171 0 0.0 e 156 6 3.9 < 0.001
    12 475 11 2.3 177 0 0.0 0.090 176 5 2.8 0.921
      注:“—”表示无数据;a 比较2018 — 2019年与2020年;b 比较2018 — 2019年与2021年;c 比较2018 — 2019年与2022年;d Fisher确切概率法;e 行或列总和为零,未计算统计量。
    下载: 导出CSV

    表  6  基于月份比较新冠疫情前及疫情期间Spn检出率(%)

    Table  6.   Year period-/year-specific monthly detection rate of Streptococcus pneumoniae among 9 005 children (0 – 14 years) hospitalized due to ALRI in a tertiary children′s hospital of Suzhou city, 2018 – July 2022

    月份2018 — 2019年2020年2021年2022年
    检测数阳性数%检测数阳性数%P a检测数阳性数%P b检测数阳性数%P c
    16397611.91322015.20.30218652.7 < 0.0011661710.20.553
    23954912.4771620.80.0519688.30.264
    35968013.41041817.30.2921131513.30.966
    44678217.63139.70.2591362216.20.7072428.30.372
    55329317.514185.7 < 0.0011572817.80.9195958.50.078
    63766717.8791417.70.9841622817.30.8818855.70.005
    73995513.84249.50.4401662615.70.56213696.60.026
    84155012.143614.00.7171201210.00.537
    94035613.9791316.50.5531251915.20.715
    104186415.31021817.70.5621452517.20.421
    115016813.61712615.20.5951562214.10.867
    12475337.017700.0 < 0.001176158.50.494
      注:“—”表示无数据;a 比较2018 — 2019年与2020年;b 比较2018 — 2019年与2021年;c 比较2018 — 2019年与2022年。
    下载: 导出CSV

    表  8  2018年 — 2022年7月不同年龄患儿5种常见呼吸道病原体检出率(%)

    Table  8.   Age group-specific detection rate of five respiratory pathogens by year period/year among 9 005 children (0 – 14 years) hospitalized due to ALRI in a tertiary children′s hospital of Suzhou city, 2018 – July 2022

    年龄组(岁)2018 — 2019年2020年2021年2022年1 — 7月
    检测数阳性数%检测数阳性数%检测数阳性数%检测数阳性数%
    RSV
     < 1262250919.44066516.057717129.62627428.2
     1~14131148.1300196.351910019.31713822.2
     3~1015363.6217125.54708217.5150149.3
     6~1456630.57422.714432.19933.0
    FluA
     < 126221606.140630.757700.026220.8
     1~14131349.530031.051920.417174.1
     3~1015919.021752.347000.0150117.3
     6~14566244.27422.714400.09944.0
    FluB
     < 12622522.040630.757761.026283.1
     1~1413463.330031.051951.017174.1
     3~1015636.221783.747030.615042.7
     6~14566346.07434.114432.19933.0
    Spn
     < 1262227010.3406297.15776210.8262166.1
     1~141322115.6300279.05197514.51712514.6
     3~101523423.12174219.44709420.01501610.7
     6~14566488.5741418.914453.59944.0
    Hi
     < 1262242016.0406215.2577356.1262124.6
     1~141323716.8300217.0519397.517163.5
     3~101516216.0217177.84704810.215085.3
     6~14566498.774912.214464.29911.0
    下载: 导出CSV

    表  9  2018年 — 2022年7月不同呼吸道病原体阳性患儿年龄构成情况(%)

    Table  9.   Year period-/year-specific age structure (%) of five respiratory pathogens-infected children (0 – 14 years) hospitalized due to ALRI in a tertiary children′s hospital of Suzhou city, 2018 – July 2022

    年龄组(岁)2018 — 2019年2020年2021年2022年1 — 7月
    n%n%n%n%
    RSV
     < 150976.96566.317148.07457.4
     1~11417.21919.410028.13829.4
     3~365.41212.38223.11410.9
     6~1430.522.030.832.3
    FluA
     < 116039.1323.100.028.3
     1~13432.8323.12100.0729.2
     3~9122.2538.400.01145.8
     6~14245.9215.400.0416.7
    FluB
     < 15226.7317.6635.4836.4
     1~4623.6317.6529.4731.8
     3~6332.3847.2317.6418.2
     6~143417.4317.6317.6313.6
    Spn
     < 127034.92925.96226.31626.2
     1~22128.62724.17531.82541.0
     3~23430.34237.59439.81626.2
     6~14486.21412.552.146.6
    Hi
     < 142048.42130.93527.31244.5
     1~23727.32130.93930.5622.2
     3~16218.71725.04837.5829.6
     6~14495.6913.264.713.7
    下载: 导出CSV
  • [1] Nair H, Simões EAF, Rudan I, et al. Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: a systematic analysis[J]. The Lancet, 2013, 381(9875): 1380 – 1390. doi: 10.1016/S0140-6736(12)61901-1
    [2] Rudan I, O'Brien KL, Nair H, et al. Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative patho-gens for 192 countries[J]. Journal of Global Health, 2013, 3(1): 010401.
    [3] 甘小琴, 苏莉, 王旭霞, 等. 5岁以下儿童社区获得性肺炎病原谱及疾病负担研究进展[J]. 中国公共卫生, 2018, 34(11): 1471 – 1475. doi: 10.11847/zgggws1119742
    [4] Chen QL, Rodewald L, Lai SJ, et al. Rapid and sustained containment of covid-19 is achievable and worthwhile: implica-tions for pandemic response[J]. BMJ, 2021, 375: e066169.
    [5] Spinelli MA, Glidden DV, Gennatas ED, et al. Importance of non-pharmaceutical interventions in lowering the viral inoculum to reduce susceptibility to infection by SARS-CoV-2 and potentially disease severity[J]. The Lancet Infectious Diseases, 2021, 21(9): E296 – E301. doi: 10.1016/S1473-3099(20)30982-8
    [6] Shen DP, Vermeulen F, Debeer A, et al. Impact of COVID-19 on viral respiratory infection epidemiology in young children: a single-center analysis[J]. Frontiers in Public Health, 2022, 10: 931242. doi: 10.3389/fpubh.2022.931242
    [7] Song SX, Li Q, Shen L, et al. From outbreak to near disappearance: how did non-pharmaceutical interventions against COVID-19 affect the transmission of influenza virus?[J]. Frontiers in Public Health, 2022, 10: 863522. doi: 10.3389/fpubh.2022.863522
    [8] Yuan HK, Yeung A, Yang W. Interactions among common non-SARS-CoV-2 respiratory viruses and influence of the COVID-19 pandemic on their circulation in New York City[J]. Influenza and Other Respiratory Viruses, 2022, 16(4): 653 – 661. doi: 10.1111/irv.12976
    [9] Terliesner N, Unterwalder N, Edelmann A, et al. Viral infections in hospitalized children in Germany during the COVID-19 pandemic: association with non-pharmaceutical interventions[J]. Frontiers in Pediatrics, 2022, 10: 935483. doi: 10.3389/fped.2022.935483
    [10] Leung NHL, Chu DKW, Shiu EYC, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks[J]. Nature Medicine, 2020, 26(5): 676 – 680. doi: 10.1038/s41591-020-0843-2
    [11] 吴云风, 刘青. 新型冠状病毒感染疫情防控前后的流感流行特征分析[J]. 检验医学与临床, 2023, 20(8): 1025 – 1028,1032. doi: 10.3969/j.issn.1672-9455.2023.08.001
    [12] 陈伟, 吴小丽, 李彦坤, 等. 新冠肺炎疫情防控期间儿童家长预防接种态度调查[J]. 中国公共卫生, 2020, 36(6): 916 – 919. doi: 10.11847/zgggws1129384
    [13] Cohen R, Ashman M, Taha MK, et al. Pediatric Infectious Disease Group (GPIP) position paper on the immune debt of the COVID-19 pandemic in childhood, how can we fill the immunity gap?[J]. Infectious Diseases Now, 2021, 51(5): 418 – 423. doi: 10.1016/j.idnow.2021.05.004
    [14] Zhou JJ, Zhao PP, Nie MJ, et al. Changes of Haemophilus influenzae infection in children before and after the COVID-19 pandemic, Henan, China[J]. Journal of Infection, 2023, 86(1): 66 – 117.
    [15] Brueggemann AB, van Rensburg MJJ, Shaw D, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data[J]. The Lancet Digital Health, 2021, 3(6): E360 – E370. doi: 10.1016/S2589-7500(21)00077-7
    [16] Meng Q, Li WJ, Jiang HF, et al. Comparison of the distribution and changes in the antibiotic resistance of clinical bacterial isolates from the lower respiratory tract of children in Shenzhen before the epidemic, during the epidemic, and during the period of normalized prevention and control of COVID-19[J]. Infectious Diseases and Therapy, 2023, 12(2): 563 – 575. doi: 10.1007/s40121-022-00751-4
    [17] Eden JS, Sikazwe C, Xie RP, et al. Off-season RSV epidemics in Australia after easing of COVID-19 restrictions[J]. Nature Communications, 2022, 13(1): 2884. doi: 10.1038/s41467-022-30485-3
    [18] Bardsley M, Morbey RA, Hughes HE, et al. Epidemiology of respiratory syncytial virus in children younger than 5 years in England during the COVID-19 pandemic, measured by laboratory, clinical, and syndromic surveillance: a retrospective observational study[J]. The Lancet Infectious Diseases, 2023, 23(1): 56 – 66. doi: 10.1016/S1473-3099(22)00525-4
    [19] Mondal P, Sinharoy A, Gope S. The influence of COVID-19 on influenza and respiratory syncytial virus activities[J]. Infectious Disease Reports, 2022, 14(1): 134 – 141. doi: 10.3390/idr14010017
    [20] Rybak A, Levy C, Angoulvant F, et al. Association of nonphar-maceutical interventions during the COVID-19 pandemic with invasive pneumococcal disease, pneumococcal carriage, and respiratory viral infections among children in France[J]. JAMA Network Open, 2022, 5(6): e2218959. doi: 10.1001/jamanetworkopen.2022.18959
    [21] Danino D, Ben-Shimol S, van der Beek BA, et al. Decline in pneumococcal disease in young children during the coronavirus disease 2019 (COVID-19) pandemic in Israel associated with suppression of seasonal respiratory viruses, despite persistent pneumococcal carriage: a prospective cohort study[J]. Clinical Infectious Diseases, 2022, 75(1): e1154 – e1164. doi: 10.1093/cid/ciab1014
    [22] de Waroux OLP, Flasche S, Prieto-Merino D, et al. Age-dependent prevalence of nasopharyngeal carriage of Streptococcus pneumo-niae before conjugate vaccine introduction: a prediction model based on a meta-analysis[J]. PLoS One, 2014, 9(1): e86136. doi: 10.1371/journal.pone.0086136
    [23] Liu PC, Xu MH, Lu LJ, et al. The changing pattern of common respiratory and enteric viruses among outpatient children in Shanghai, China: two years of the COVID-19 pandemic[J]. Journal of Medical Virology, 2022, 94(10): 4696 – 4703. doi: 10.1002/jmv.27896
    [24] Jiang ML, Xu YP, Wu H, et al. Changes in endemic patterns of respiratory syncytial virus infection in pediatric patients under the pressure of nonpharmaceutical interventions for COVID-19 in Beijing, China[J]. Journal of Medical Virology, 2023, 95(1): e28411. doi: 10.1002/jmv.28411
    [25] Ren LS, Lin L, Zhang H, et al. Epidemiological and clinical charac-teristics of respiratory syncytial virus and influenza infections in hospitalized children before and during the COVID-19 pandemic in Central China[J]. Influenza and Other Respiratory Viruses, 2023, 17(2): e13103. doi: 10.1111/irv.13103
    [26] Fourgeaud J, Toubiana J, Chappuy H, et al. Impact of public health measures on the post-COVID-19 respiratory syncytial virus epidemics in France[J]. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40(11): 2389 – 2395. doi: 10.1007/s10096-021-04323-1
    [27] Li YZ, Guo YJ, Duan YT. Changes in Streptococcus pneumoniae infection in children before and after the COVID-19 pandemic in Zhengzhou, China[J]. Journal of Infection, 2022, 85(3): E80 – E81. doi: 10.1016/j.jinf.2022.05.040
  • 加载中
图(1) / 表(9)
计量
  • 文章访问数:  555
  • HTML全文浏览量:  166
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 接收日期:  2023-06-09
  • 录用日期:  2023-12-04
  • 修回日期:  2023-11-25
  • 网络出版日期:  2023-12-06

目录

    /

    返回文章
    返回